moonseok's picture
End of training
8d25a22
metadata
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
  - generated_from_trainer
datasets:
  - speech_commands
metrics:
  - accuracy
model-index:
  - name: wav2vec_final_output
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: speech_commands
          type: speech_commands
          config: v0.02
          split: test
          args: v0.02
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.901840490797546

wav2vec_final_output

This model is a fine-tuned version of facebook/wav2vec2-base on the speech_commands dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4410
  • Accuracy: 0.9018

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.4588 1.0 663 1.2309 0.8763
0.6109 2.0 1326 0.5745 0.8920
0.4153 3.0 1989 0.4884 0.8953
0.3227 4.0 2652 0.4574 0.8980
0.2806 5.0 3315 0.4412 0.8994
0.207 6.0 3978 0.4403 0.9014
0.2226 7.0 4641 0.4479 0.8998
0.2577 8.0 5304 0.4421 0.9014
0.2188 9.0 5967 0.4408 0.9016
0.2082 10.0 6630 0.4410 0.9018

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1