moonseok's picture
End of training
8a00038
metadata
license: bsd-3-clause
base_model: MIT/ast-finetuned-audioset-10-10-0.4593
tags:
  - generated_from_trainer
datasets:
  - speech_commands
metrics:
  - accuracy
model-index:
  - name: AST_speechcommandsV2_final
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: speech_commands
          type: speech_commands
          config: v0.02
          split: test
          args: v0.02
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8889570552147239

AST_speechcommandsV2_final

This model is a fine-tuned version of MIT/ast-finetuned-audioset-10-10-0.4593 on the speech_commands dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4825
  • Accuracy: 0.8890

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 72
  • eval_batch_size: 72
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 288
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3557 1.0 294 0.7017 0.8354
0.1948 2.0 589 0.6838 0.8397
0.1219 3.0 884 0.5752 0.8699
0.0704 4.0 1179 0.5554 0.8675
0.0404 5.0 1473 0.5437 0.8663
0.0136 6.0 1768 0.5247 0.8759
0.0072 7.0 2063 0.5235 0.8759
0.0026 8.0 2358 0.5035 0.8859
0.0007 9.0 2652 0.4800 0.8896
0.0005 9.97 2940 0.4825 0.8890

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.14.6
  • Tokenizers 0.14.1