moock's picture
Update README.md
c8501bb
metadata
license: apache-2.0
base_model: microsoft/swinv2-tiny-patch4-window8-256
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swinv2-tiny-patch4-window8-256-finetuned-gardner-exp-max
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8389261744966443

swinv2-tiny-patch4-window8-256-finetuned-gardner-exp-max

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5312
  • Accuracy: 0.8389

Model description

Predict Expansion Grade - Gardner Score from an embryo image

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.6068 0.97 14 1.5809 0.5415
1.56 2.0 29 1.2830 0.5415
1.1852 2.97 43 1.0794 0.5415
1.1132 4.0 58 0.9314 0.6488
0.9416 4.97 72 0.8935 0.6341
0.9143 6.0 87 0.8009 0.6829
0.8243 6.97 101 0.8067 0.6634
0.8171 8.0 116 0.7783 0.6780
0.7901 8.97 130 0.7871 0.6585
0.7944 10.0 145 0.7414 0.6976
0.7669 10.97 159 0.6977 0.7122
0.7478 12.0 174 0.7043 0.7122
0.766 12.97 188 0.7778 0.6585
0.7322 14.0 203 0.7504 0.6780
0.7242 14.97 217 0.7291 0.6829
0.7554 16.0 232 0.7694 0.6634
0.7422 16.97 246 0.7569 0.6829
0.7292 18.0 261 0.7389 0.6780
0.7354 18.97 275 0.6684 0.7122
0.6847 20.0 290 0.6821 0.7122
0.7231 20.97 304 0.6839 0.7024
0.6962 22.0 319 0.6958 0.6878
0.7079 22.97 333 0.7039 0.6878
0.7088 24.0 348 0.6974 0.6878
0.7106 24.14 350 0.6975 0.6878

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2
  • Datasets 2.16.0
  • Tokenizers 0.15.0