distilbert-base-uncased-lora-text-classification
This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.0287
- Accuracy: {'accuracy': 0.874}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 250 | 0.4453 | {'accuracy': 0.867} |
0.4345 | 2.0 | 500 | 0.5586 | {'accuracy': 0.853} |
0.4345 | 3.0 | 750 | 0.6398 | {'accuracy': 0.867} |
0.3044 | 4.0 | 1000 | 0.6654 | {'accuracy': 0.872} |
0.3044 | 5.0 | 1250 | 0.8133 | {'accuracy': 0.883} |
0.1693 | 6.0 | 1500 | 0.9307 | {'accuracy': 0.864} |
0.1693 | 7.0 | 1750 | 1.0022 | {'accuracy': 0.872} |
0.0851 | 8.0 | 2000 | 1.0017 | {'accuracy': 0.869} |
0.0851 | 9.0 | 2250 | 0.9970 | {'accuracy': 0.878} |
0.0407 | 10.0 | 2500 | 1.0287 | {'accuracy': 0.874} |
Framework versions
- PEFT 0.12.0
- Transformers 4.42.4
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 2
Model tree for momentumxx2/distilbert-base-uncased-lora-text-classification
Base model
distilbert/distilbert-base-uncased