Edit model card

distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0287
  • Accuracy: {'accuracy': 0.874}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 250 0.4453 {'accuracy': 0.867}
0.4345 2.0 500 0.5586 {'accuracy': 0.853}
0.4345 3.0 750 0.6398 {'accuracy': 0.867}
0.3044 4.0 1000 0.6654 {'accuracy': 0.872}
0.3044 5.0 1250 0.8133 {'accuracy': 0.883}
0.1693 6.0 1500 0.9307 {'accuracy': 0.864}
0.1693 7.0 1750 1.0022 {'accuracy': 0.872}
0.0851 8.0 2000 1.0017 {'accuracy': 0.869}
0.0851 9.0 2250 0.9970 {'accuracy': 0.878}
0.0407 10.0 2500 1.0287 {'accuracy': 0.874}

Framework versions

  • PEFT 0.12.0
  • Transformers 4.42.4
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for momentumxx2/distilbert-base-uncased-lora-text-classification

Adapter
(190)
this model