Aana
Collection
This collection will include language, vision and audio models pre-trained or fine-tuned by Mobius Labs GmbH
•
1 item
•
Updated
•
1
aanaphi2-v0.1 is a finetuned (SFT + DPO) chat model based on Microsoft's Phi-2 base model (2.8B parameters).
Models | phi-2 | aanaphi2-v0.1 |
---|---|---|
ARC (25-shot) | 61.09 | 63.74 |
HellaSwag (10-shot) | 75.11 | 78.30 |
MMLU (5-shot) | 58.11 | 57.70 |
TruthfulQA-MC2 | 44.47 | 51.56 |
Winogrande (5-shot) | 74.35 | 73.40 |
GSM8K (5-shot) | 54.81 | 58.61 |
Average | 61.33 | 63.89 |
Make sure you have the latest version of the transformers library:
pip install pip --upgrade && pip install transformers --upgrade
#Load model
import transformers, torch
#GPU runtime
device = 'cuda'
compute_dtype = torch.float16
##CPU runtime
#device = 'cpu'
#compute_dtype = torch.float32
cache_path = ''
model_id = "mobiuslabsgmbh/aanaphi2-v0.1"
model = transformers.AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=compute_dtype,
cache_dir=cache_path,
device_map=device)
tokenizer = transformers.AutoTokenizer.from_pretrained(model_id, cache_dir=cache_path)
#Set Prompt format
instruction_template = "### Human: "
response_template = "### Assistant: "
def prompt_format(prompt):
out = instruction_template + prompt + '\n' + response_template
return out
model.eval();
@torch.no_grad()
def generate(prompt, max_length=1024):
prompt_chat = prompt_format(prompt)
inputs = tokenizer(prompt_chat, return_tensors="pt", return_attention_mask=True).to(device)
outputs = model.generate(**inputs, max_length=max_length, eos_token_id= tokenizer.eos_token_id)
text = tokenizer.batch_decode(outputs[:,:-1])[0]
return text
#Generate
print(generate('If A+B=C and B=C, what would be the value of A?'))