Edit model card

distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8080
  • Accuracy: 0.88

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.7263 1.0 113 1.6331 0.59
1.1167 2.0 226 1.2046 0.65
0.774 3.0 339 0.8365 0.8
0.6507 4.0 452 0.7015 0.81
0.5046 5.0 565 0.6722 0.81
0.2632 6.0 678 0.6743 0.82
0.203 7.0 791 0.7351 0.84
0.0902 8.0 904 0.5898 0.86
0.0215 9.0 1017 0.6213 0.87
0.0097 10.0 1130 0.6948 0.86
0.1171 11.0 1243 0.6228 0.87
0.0054 12.0 1356 0.7101 0.86
0.0035 13.0 1469 0.7626 0.87
0.0028 14.0 1582 0.7659 0.86
0.0027 15.0 1695 0.6993 0.87
0.0023 16.0 1808 0.7345 0.87
0.0023 17.0 1921 0.8363 0.86
0.0018 18.0 2034 0.7779 0.88
0.0018 19.0 2147 0.8275 0.87
0.0018 20.0 2260 0.8080 0.88

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.0
  • Tokenizers 0.15.0
Downloads last month
35
Safetensors
Model size
23.7M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mmcgovern574/distilhubert-finetuned-gtzan

Finetuned
(391)
this model

Dataset used to train mmcgovern574/distilhubert-finetuned-gtzan

Evaluation results