Update README.md
#3
by
reach-vb
HF staff
- opened
README.md
CHANGED
@@ -1,9 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
2 |
# pixtral-12b-240910
|
3 |
|
4 |
> [!WARNING]
|
5 |
> This model checkpoint is provided as-is and might not be up-to-date. It mirrors the torrent released by Mistral AI and uploaded by the community.
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
βββββ
|
9 |
ββββββββββββββββββ
|
@@ -68,3 +91,98 @@
|
|
68 |
β - Use 2D ROPE for the vision encoder β
|
69 |
β β
|
70 |
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- multimodal
|
4 |
+
- mistral
|
5 |
+
- pixtral
|
6 |
+
---
|
7 |
|
8 |
# pixtral-12b-240910
|
9 |
|
10 |
> [!WARNING]
|
11 |
> This model checkpoint is provided as-is and might not be up-to-date. It mirrors the torrent released by Mistral AI and uploaded by the community.
|
12 |
|
13 |
+
Downloaded from the magnet link:
|
14 |
+
|
15 |
+
magnet:?xt=urn:btih:7278e625de2b1da598b23954c13933047126238a&dn=pixtral-12b-240910&tr=udp%3A%2F%http://2Ftracker.opentrackr.org%3A1337%2Fannounce&tr=udp%3A%2F%http://2Fopen.demonii.com%3A1337%2Fannounce&tr=http%3A%2F%http://2Ftracker.ipv6tracker.org%3A80%2Fannounce
|
16 |
+
|
17 |
+
Published by MistralAI in twitter/X:
|
18 |
+
https://x.com/MistralAI/status/1833758285167722836
|
19 |
+
|
20 |
+
Release information:
|
21 |
+
https://github.com/mistralai/mistral-common/releases/tag/v1.4.0
|
22 |
+
|
23 |
+
# Pixtral is out!
|
24 |
+
|
25 |
+
Mistral common has image support! You can now pass images and URLs alongside text into the user message.
|
26 |
+
```
|
27 |
+
pip install --upgrade mistral_common
|
28 |
+
```
|
29 |
+
|
30 |
|
31 |
βββββ
|
32 |
ββββββββββββββββββ
|
|
|
91 |
β - Use 2D ROPE for the vision encoder β
|
92 |
β β
|
93 |
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
## Images
|
98 |
+
|
99 |
+
You can encode images as follows
|
100 |
+
```
|
101 |
+
from mistral_common.protocol.instruct.messages import (
|
102 |
+
UserMessage,
|
103 |
+
TextChunk,
|
104 |
+
ImageURLChunk,
|
105 |
+
ImageChunk,
|
106 |
+
)
|
107 |
+
from PIL import Image
|
108 |
+
from mistral_common.protocol.instruct.request import ChatCompletionRequest
|
109 |
+
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
|
110 |
+
|
111 |
+
tokenizer = MistralTokenizer.from_model("pixtral")
|
112 |
+
|
113 |
+
image = Image.new('RGB', (64, 64))
|
114 |
+
|
115 |
+
# tokenize images and text
|
116 |
+
tokenized = tokenizer.encode_chat_completion(
|
117 |
+
ChatCompletionRequest(
|
118 |
+
messages=[
|
119 |
+
UserMessage(
|
120 |
+
content=[
|
121 |
+
TextChunk(text="Describe this image"),
|
122 |
+
ImageChunk(image=image),
|
123 |
+
]
|
124 |
+
)
|
125 |
+
],
|
126 |
+
model="pixtral",
|
127 |
+
)
|
128 |
+
)
|
129 |
+
tokens, text, images = tokenized.tokens, tokenized.text, tokenized.images
|
130 |
+
|
131 |
+
# Count the number of tokens
|
132 |
+
print("# tokens", len(tokens))
|
133 |
+
print("# images", len(images))
|
134 |
+
```
|
135 |
+
|
136 |
+
## Image URLs
|
137 |
+
|
138 |
+
You can pass image url which will be automatically downloaded
|
139 |
+
```
|
140 |
+
url_dog = "https://picsum.photos/id/237/200/300"
|
141 |
+
url_mountain = "https://picsum.photos/seed/picsum/200/300"
|
142 |
+
|
143 |
+
# tokenize image urls and text
|
144 |
+
tokenized = tokenizer.encode_chat_completion(
|
145 |
+
ChatCompletionRequest(
|
146 |
+
messages=[
|
147 |
+
UserMessage(
|
148 |
+
content=[
|
149 |
+
TextChunk(text="Can this animal"),
|
150 |
+
ImageURLChunk(image_url=url_dog),
|
151 |
+
TextChunk(text="live here?"),
|
152 |
+
ImageURLChunk(image_url=url_mountain),
|
153 |
+
]
|
154 |
+
)
|
155 |
+
],
|
156 |
+
model="pixtral",
|
157 |
+
)
|
158 |
+
)
|
159 |
+
tokens, text, images = tokenized.tokens, tokenized.text, tokenized.images
|
160 |
+
|
161 |
+
# Count the number of tokens
|
162 |
+
print("# tokens", len(tokens))
|
163 |
+
print("# images", len(images))
|
164 |
+
```
|
165 |
+
|
166 |
+
# ImageData
|
167 |
+
|
168 |
+
You can also pass image encoded as base64
|
169 |
+
```
|
170 |
+
tokenized = tokenizer.encode_chat_completion(
|
171 |
+
ChatCompletionRequest(
|
172 |
+
messages=[
|
173 |
+
UserMessage(
|
174 |
+
content=[
|
175 |
+
TextChunk(text="What is this?"),
|
176 |
+
ImageURLChunk(image_url=""),
|
177 |
+
]
|
178 |
+
)
|
179 |
+
],
|
180 |
+
model="pixtral",
|
181 |
+
)
|
182 |
+
)
|
183 |
+
tokens, text, images = tokenized.tokens, tokenized.text, tokenized.images
|
184 |
+
|
185 |
+
# Count the number of tokens
|
186 |
+
print("# tokens", len(tokens))
|
187 |
+
print("# images", len(images))
|
188 |
+
```
|