minoosh's picture
update model card README.md
fa67638
metadata
license: mit
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: finetuned_roberta-base-uncased
    results: []

finetuned_roberta-base-uncased

This model is a fine-tuned version of xlm-roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4799
  • Accuracy: 0.6519

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.372 1.0 102 1.3643 0.3375
1.1591 2.0 204 1.1988 0.4830
0.9623 3.0 306 1.0802 0.5694
0.7766 4.0 408 0.9885 0.6237
0.7336 5.0 510 1.0393 0.6120
0.6284 6.0 612 1.1150 0.6392
0.3616 7.0 714 1.2183 0.6402
0.3526 8.0 816 1.2362 0.6305
0.3151 9.0 918 1.3058 0.6372
0.3035 10.0 1020 1.2966 0.6343
0.2458 11.0 1122 1.3752 0.6508
0.2469 12.0 1224 1.4557 0.6557
0.2039 13.0 1326 1.5541 0.6372
0.1691 14.0 1428 1.5308 0.6343
0.1455 15.0 1530 1.6339 0.6421
0.1716 16.0 1632 1.6843 0.6392
0.1698 17.0 1734 1.6802 0.6479
0.2009 18.0 1836 1.6544 0.6479
0.1415 19.0 1938 1.6759 0.6518
0.1616 20.0 2040 1.6833 0.6508

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.1
  • Tokenizers 0.13.2