metadata
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: finetuned_roberta-base-uncased
results: []
finetuned_roberta-base-uncased
This model is a fine-tuned version of xlm-roberta-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.4799
- Accuracy: 0.6519
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.372 | 1.0 | 102 | 1.3643 | 0.3375 |
1.1591 | 2.0 | 204 | 1.1988 | 0.4830 |
0.9623 | 3.0 | 306 | 1.0802 | 0.5694 |
0.7766 | 4.0 | 408 | 0.9885 | 0.6237 |
0.7336 | 5.0 | 510 | 1.0393 | 0.6120 |
0.6284 | 6.0 | 612 | 1.1150 | 0.6392 |
0.3616 | 7.0 | 714 | 1.2183 | 0.6402 |
0.3526 | 8.0 | 816 | 1.2362 | 0.6305 |
0.3151 | 9.0 | 918 | 1.3058 | 0.6372 |
0.3035 | 10.0 | 1020 | 1.2966 | 0.6343 |
0.2458 | 11.0 | 1122 | 1.3752 | 0.6508 |
0.2469 | 12.0 | 1224 | 1.4557 | 0.6557 |
0.2039 | 13.0 | 1326 | 1.5541 | 0.6372 |
0.1691 | 14.0 | 1428 | 1.5308 | 0.6343 |
0.1455 | 15.0 | 1530 | 1.6339 | 0.6421 |
0.1716 | 16.0 | 1632 | 1.6843 | 0.6392 |
0.1698 | 17.0 | 1734 | 1.6802 | 0.6479 |
0.2009 | 18.0 | 1836 | 1.6544 | 0.6479 |
0.1415 | 19.0 | 1938 | 1.6759 | 0.6518 |
0.1616 | 20.0 | 2040 | 1.6833 | 0.6508 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2