Edit model card

finetuned-bert-base-uncased-on-HOPE

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3515
  • Accuracy: 0.5345

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.7368 1.0 289 1.6685 0.4526
1.3051 2.0 578 1.4303 0.5176
1.0563 3.0 867 1.3849 0.5438
1.1101 4.0 1156 1.4233 0.5185
0.9118 5.0 1445 1.5438 0.5023
0.7889 6.0 1734 1.6832 0.5014
0.4892 7.0 2023 1.8469 0.4824
0.3739 8.0 2312 2.0680 0.4734
0.3813 9.0 2601 2.1392 0.4706
0.3459 10.0 2890 2.2772 0.4761
0.2323 11.0 3179 2.3445 0.4688
0.1977 12.0 3468 2.4754 0.4761
0.2351 13.0 3757 2.5912 0.4661
0.1991 14.0 4046 2.6713 0.4743
0.2239 15.0 4335 2.7262 0.4706
0.155 16.0 4624 2.7958 0.4697
0.1675 17.0 4913 2.8367 0.4724
0.1471 18.0 5202 2.8619 0.4715
0.1973 19.0 5491 2.8744 0.4770
0.1902 20.0 5780 2.8865 0.4752

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
7
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for minoosh/finetuned-bert-base-uncased-on-HOPE

Finetuned
(2110)
this model