metadata
title: chinese-alpaca-plus-33b-merged
emoji: 📚
colorFrom: gray
colorTo: red
sdk: gradio
sdk_version: 3.23.0
app_file: app.py
pinned: false
加入中文词表并继续预训练中文Embedding,并在此基础上继续使用指令数据集finetuning,得到的中文Alpaca-plus-33B模型。
模型转换用到的相关base及lora模型如下:
- base-model: elinas/llama-30b-hf-transformers-4.29
- lora-model: ziqingyang/chinese-llama-plus-lora-33b, ziqingyang/chinese-alpaca-plus-lora-33b
详情可参考:https://github.com/ymcui/Chinese-LLaMA-Alpaca/releases/tag/v5.0
使用方法参考
- 安装模块包
pip install sentencepiece
pip install transformers>=4.28.0
- 生成文本
import torch
import transformers
from transformers import LlamaTokenizer, LlamaForCausalLM
def generate_prompt(text):
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{text}
### Response:"""
tokenizer = LlamaTokenizer.from_pretrained('minlik/chinese-alpaca-plus-33b-merged')
model = LlamaForCausalLM.from_pretrained('minlik/chinese-alpaca-plus-33b-merged').half().to('cuda')
model.eval()
text = '第一个登上月球的人是谁?'
prompt = generate_prompt(text)
input_ids = tokenizer.encode(prompt, return_tensors='pt').to('cuda')
with torch.no_grad():
output_ids = model.generate(
input_ids=input_ids,
max_new_tokens=128,
temperature=1,
top_k=40,
top_p=0.9,
repetition_penalty=1.15
).cuda()
output = tokenizer.decode(output_ids[0], skip_special_tokens=True)
print(output.replace(prompt, '').strip())