result / README.md
mimthedeveloper's picture
Model save
d8bc898 verified
|
raw
history blame
3.81 kB
metadata
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - accuracy
model-index:
  - name: result
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: audiofolder
          type: audiofolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9690721649484536

result

This model is a fine-tuned version of facebook/wav2vec2-base on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9485
  • Accuracy: 0.9691

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 35

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.9231 3 1.7283 0.9072
No log 1.8462 6 1.7069 0.9072
No log 2.7692 9 1.6799 0.9485
1.7783 4.0 13 1.6130 0.9278
1.7783 4.9231 16 1.5587 0.9485
1.7783 5.8462 19 1.5084 0.9691
1.6476 6.7692 22 1.4736 0.9485
1.6476 8.0 26 1.4109 0.9691
1.6476 8.9231 29 1.3672 0.9485
1.4942 9.8462 32 1.3308 0.9588
1.4942 10.7692 35 1.2972 0.9588
1.4942 12.0 39 1.2477 0.9588
1.3605 12.9231 42 1.2180 0.9588
1.3605 13.8462 45 1.1982 0.9485
1.3605 14.7692 48 1.1668 0.9691
1.2591 16.0 52 1.1356 0.9691
1.2591 16.9231 55 1.1097 0.9691
1.2591 17.8462 58 1.0918 0.9691
1.1784 18.7692 61 1.0711 0.9691
1.1784 20.0 65 1.0505 0.9691
1.1784 20.9231 68 1.0345 0.9691
1.1179 21.8462 71 1.0211 0.9691
1.1179 22.7692 74 1.0102 0.9691
1.1179 24.0 78 0.9949 0.9691
1.0669 24.9231 81 0.9835 0.9794
1.0669 25.8462 84 0.9774 0.9691
1.0669 26.7692 87 0.9736 0.9588
1.0398 28.0 91 0.9644 0.9691
1.0398 28.9231 94 0.9588 0.9794
1.0398 29.8462 97 0.9533 0.9691
1.0303 30.7692 100 0.9496 0.9691
1.0303 32.0 104 0.9485 0.9691
1.0303 32.3077 105 0.9485 0.9691

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.1.1+cu118
  • Datasets 2.20.0
  • Tokenizers 0.19.1