Edit model card

bert-base-cased-samsum

This model is a fine-tuned version of on the samsum dataset. It achieves the following results on the evaluation set:

  • Loss: 2.7369
  • Rouge1: 34.9636
  • Rouge2: 10.6358
  • Rougel: 27.6003
  • Rougelsum: 30.9654
  • Gen Len: 17.6020

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 36
  • eval_batch_size: 36
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 410 2.9218 29.2936 7.4008 23.9609 26.3194 17.2332
2.6834 2.0 820 2.7635 31.9826 8.9758 26.1311 28.7458 16.9866
2.3529 3.0 1230 2.7369 34.9636 10.6358 27.6003 30.9654 17.6020
1.9608 4.0 1640 2.7711 35.8322 11.3676 29.0276 32.2881 16.9133
1.6459 5.0 2050 2.7832 36.8688 11.8883 29.3721 32.8683 17.0879
1.6459 6.0 2460 2.8334 36.489 11.5372 29.2263 32.5406 17.8901
1.3791 7.0 2870 2.8767 37.0743 11.8554 29.4063 32.7543 17.6093
1.1687 8.0 3280 2.9232 37.2 11.8723 29.5194 32.9481 17.6581
1.0249 9.0 3690 2.9456 37.1872 12.0958 29.621 33.0073 17.8840
0.9259 10.0 4100 2.9719 37.1213 12.1068 29.5138 33.0372 17.8278

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train mimicheng/bert-base-cased-samsum

Evaluation results