Edit model card

distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9243
  • Accuracy: {'accuracy': 0.891}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 250 0.3747 {'accuracy': 0.888}
0.4137 2.0 500 0.4632 {'accuracy': 0.861}
0.4137 3.0 750 0.5433 {'accuracy': 0.884}
0.1944 4.0 1000 0.5799 {'accuracy': 0.888}
0.1944 5.0 1250 0.6973 {'accuracy': 0.893}
0.0744 6.0 1500 0.7748 {'accuracy': 0.886}
0.0744 7.0 1750 0.8573 {'accuracy': 0.892}
0.0203 8.0 2000 0.9211 {'accuracy': 0.886}
0.0203 9.0 2250 0.9319 {'accuracy': 0.892}
0.0101 10.0 2500 0.9243 {'accuracy': 0.891}

Framework versions

  • PEFT 0.9.0
  • Transformers 4.38.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
3
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for mikewatson/distilbert-base-uncased-lora-text-classification

Adapter
(190)
this model