Ubuntu
added logo
9231470
metadata
license: apache-2.0

Tesoro

Tess-2.0-Mixtral-8x22B

Tess, short for Tesoro (Treasure in Italian), is a general purpose Large Language Model series. Tess-2.0-Mixtral-8x22B was trained on the mistral-community/Mixtral-8x22B-v0.1 base.

Prompt Format

SYSTEM: <ANY SYSTEM CONTEXT>
USER: 
ASSISTANT: 

Training Methodology

Tess-2.0-Mixtral-8x22B was trained on the Tess-2.0 dataset. Tess-2.0 dataset and the training methodology follows LIMA (Less-Is-More) principles, and contains ~25K high-quality code and general training samples. The dataset is highly uncensored, hence the model will almost always follow instructions.

The model was only fine-tuned for 1-epoch to try and preserve its entropy as much as possible.

Sample code to run inference

import torch, json
from transformers import AutoModelForCausalLM, AutoTokenizer

model_path = "migtissera/Tess-2.0-Mixtral-8x22B"
output_file_path = "./conversations.jsonl"

model = AutoModelForCausalLM.from_pretrained(
    model_path,
    torch_dtype=torch.float16,
    device_map="auto",
    load_in_8bit=False,
    trust_remote_code=True,
)

tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)


def generate_text(instruction):
    tokens = tokenizer.encode(instruction)
    tokens = torch.LongTensor(tokens).unsqueeze(0)
    tokens = tokens.to("cuda")

    instance = {
        "input_ids": tokens,
        "top_p": 1.0,
        "temperature": 0.5,
        "generate_len": 1024,
        "top_k": 50,
    }

    length = len(tokens[0])
    with torch.no_grad():
        rest = model.generate(
            input_ids=tokens,
            max_length=length + instance["generate_len"],
            use_cache=True,
            do_sample=True,
            top_p=instance["top_p"],
            temperature=instance["temperature"],
            top_k=instance["top_k"],
            num_return_sequences=1,
        )
    output = rest[0][length:]
    string = tokenizer.decode(output, skip_special_tokens=True)
    answer = string.split("USER:")[0].strip()
    return f"{answer}"


conversation = f"SYSTEM: Answer the question thoughtfully and intelligently. Always answer without hesitation."


while True:
    user_input = input("You: ")
    llm_prompt = f"{conversation} \nUSER: {user_input} \nASSISTANT: "
    answer = generate_text(llm_prompt)
    print(answer)
    conversation = f"{llm_prompt}{answer}"
    json_data = {"prompt": user_input, "answer": answer}

    ## Save your conversation
    with open(output_file_path, "a") as output_file:
        output_file.write(json.dumps(json_data) + "\n")

Join My General AI Discord (NeuroLattice):

https://discord.gg/Hz6GrwGFKD

Limitations & Biases:

While this model aims for accuracy, it can occasionally produce inaccurate or misleading results.

Despite diligent efforts in refining the pretraining data, there remains a possibility for the generation of inappropriate, biased, or offensive content.

Exercise caution and cross-check information when necessary. This is an uncensored model.