trocr-base-str / README.md
nielsr's picture
nielsr HF staff
Update README.md
d7245b3
metadata
tags:
  - trocr
  - image-to-text
widget:
  - src: >-
      https://raw.githubusercontent.com/ku21fan/STR-Fewer-Labels/main/demo_image/1.png
    example_title: Example 1
  - src: >-
      https://raw.githubusercontent.com/HCIILAB/Scene-Text-Recognition-Recommendations/main/Dataset_images/LSVT1.jpg
    example_title: Example 2
  - src: >-
      https://raw.githubusercontent.com/HCIILAB/Scene-Text-Recognition-Recommendations/main/Dataset_images/ArT2.jpg
    example_title: Example 3

TrOCR (base-sized model, fine-tuned on STR benchmarks)

TrOCR model fine-tuned on the training sets of IC13, IC15, IIIT5K, SVT. It was introduced in the paper TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models by Li et al. and first released in this repository.

Model description

The TrOCR model is an encoder-decoder model, consisting of an image Transformer as encoder, and a text Transformer as decoder. The image encoder was initialized from the weights of BEiT, while the text decoder was initialized from the weights of RoBERTa.

Images are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder. Next, the Transformer text decoder autoregressively generates tokens.

Intended uses & limitations

You can use the raw model for optical character recognition (OCR) on single text-line images. See the model hub to look for fine-tuned versions on a task that interests you.

How to use

Here is how to use this model in PyTorch:

from transformers import TrOCRProcessor, VisionEncoderDecoderModel
from PIL import Image
import requests

# load image from the IIIT-5k dataset
url = 'https://i.postimg.cc/ZKwLg2Gw/367-14.png'
image = Image.open(requests.get(url, stream=True).raw).convert("RGB")

processor = TrOCRProcessor.from_pretrained('microsoft/trocr-base-str')
model = VisionEncoderDecoderModel.from_pretrained('microsoft/trocr-base-str')
pixel_values = processor(images=image, return_tensors="pt").pixel_values

generated_ids = model.generate(pixel_values)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]

BibTeX entry and citation info

@misc{li2021trocr,
      title={TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models}, 
      author={Minghao Li and Tengchao Lv and Lei Cui and Yijuan Lu and Dinei Florencio and Cha Zhang and Zhoujun Li and Furu Wei},
      year={2021},
      eprint={2109.10282},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}