YAML Metadata
Error:
"widget" must be an array
Model description
This is a DecisionTreeClassifier model built for Kaggle Tabular Playground Series August 2022, trained on supersoaker production failures dataset.
Intended uses & limitations
This model is not ready to be used in production.
Training Procedure
Hyperparameters
The model is trained with below hyperparameters.
Click to expand
Hyperparameter | Value |
---|---|
memory | |
steps | [('transformation', ColumnTransformer(transformers=[('loading_missing_value_imputer', SimpleImputer(), ['loading']), ('numerical_missing_value_imputer', SimpleImputer(),['loading', 'measurement_3', 'measurement_4','measurement_5', 'measurement_6','measurement_7', 'measurement_8','measurement_9', 'measurement_10','measurement_11', 'measurement_12','measurement_13', 'measurement_14','measurement_15', 'measurement_16','measurement_17']),('attribute_0_encoder', OneHotEncoder(),['attribute_0']),('attribute_1_encoder', OneHotEncoder(),['attribute_1']),('product_code_encoder', OneHotEncoder(),['product_code'])])), ('model', DecisionTreeClassifier(max_depth=4))] |
verbose | False |
transformation | ColumnTransformer(transformers=[('loading_missing_value_imputer',SimpleImputer(), ['loading']),('numerical_missing_value_imputer',SimpleImputer(),['loading', 'measurement_3', 'measurement_4','measurement_5', 'measurement_6','measurement_7', 'measurement_8','measurement_9', 'measurement_10','measurement_11', 'measurement_12','measurement_13', 'measurement_14','measurement_15', 'measurement_16','measurement_17']),('attribute_0_encoder', OneHotEncoder(),['attribute_0']),('attribute_1_encoder', OneHotEncoder(), |
'attribute_1']),('product_code_encoder', OneHotEncoder(),['product_code'])]) | |
model | DecisionTreeClassifier(max_depth=4) |
transformation__n_jobs | |
transformation__remainder | drop |
transformation__sparse_threshold | 0.3 |
transformation__transformer_weights | |
transformation__transformers | [('loading_missing_value_imputer', SimpleImputer(), ['loading']), ('numerical_missing_value_imputer', SimpleImputer(), ['loading', 'measurement_3', 'measurement_4', 'measurement_5', 'measurement_6', 'measurement_7', 'measurement_8', 'measurement_9', 'measurement_10', 'measurement_11', 'measurement_12', 'measurement_13', 'measurement_14', 'measurement_15', 'measurement_16', 'measurement_17']), ('attribute_0_encoder', OneHotEncoder(), ['attribute_0']), ('attribute_1_encoder', OneHotEncoder(), ['attribute_1']), ('product_code_encoder', OneHotEncoder(),['product_code'])] |
transformation__verbose | False |
transformation__verbose_feature_names_out | True |
transformation__loading_missing_value_imputer | SimpleImputer() |
transformation__numerical_missing_value_imputer | SimpleImputer() |
transformation__attribute_0_encoder | OneHotEncoder() |
transformation__attribute_1_encoder | OneHotEncoder() |
transformation__product_code_encoder | OneHotEncoder() |
transformation__loading_missing_value_imputer__add_indicator | False |
transformation__loading_missing_value_imputer__copy | True |
transformation__loading_missing_value_imputer__fill_value | |
transformation__loading_missing_value_imputer__missing_values | nan |
transformation__loading_missing_value_imputer__strategy | mean |
transformation__loading_missing_value_imputer__verbose | 0 |
transformation__numerical_missing_value_imputer__add_indicator | False |
transformation__numerical_missing_value_imputer__copy | True |
transformation__numerical_missing_value_imputer__fill_value | |
transformation__numerical_missing_value_imputer__missing_values | nan |
transformation__numerical_missing_value_imputer__strategy | mean |
transformation__numerical_missing_value_imputer__verbose | 0 |
transformation__attribute_0_encoder__categories | auto |
transformation__attribute_0_encoder__drop | |
transformation__attribute_0_encoder__dtype | <class 'numpy.float64'> |
transformation__attribute_0_encoder__handle_unknown | error |
transformation__attribute_0_encoder__sparse | True |
transformation__attribute_1_encoder__categories | auto |
transformation__attribute_1_encoder__drop | |
transformation__attribute_1_encoder__dtype | <class 'numpy.float64'> |
transformation__attribute_1_encoder__handle_unknown | error |
transformation__attribute_1_encoder__sparse | True |
transformation__product_code_encoder__categories | auto |
transformation__product_code_encoder__drop | |
transformation__product_code_encoder__dtype | <class 'numpy.float64'> |
transformation__product_code_encoder__handle_unknown | error |
transformation__product_code_encoder__sparse | True |
model__ccp_alpha | 0.0 |
model__class_weight | |
model__criterion | gini |
model__max_depth | 4 |
model__max_features | |
model__max_leaf_nodes | |
model__min_impurity_decrease | 0.0 |
model__min_samples_leaf | 1 |
model__min_samples_split | 2 |
model__min_weight_fraction_leaf | 0.0 |
model__random_state | |
model__splitter | best |
Model Plot
The model plot is below.
Pipeline(steps=[('transformation',ColumnTransformer(transformers=[('loading_missing_value_imputer',SimpleImputer(),['loading']),('numerical_missing_value_imputer',SimpleImputer(),['loading', 'measurement_3','measurement_4','measurement_5','measurement_6','measurement_7','measurement_8','measurement_9','measurement_10','measurement_11','measurement_12','measurement_13','measurement_14','measurement_15','measurement_16','measurement_17']),('attribute_0_encoder',OneHotEncoder(),['attribute_0']),('attribute_1_encoder',OneHotEncoder(),['attribute_1']),('product_code_encoder',OneHotEncoder(),['product_code'])])),('model', DecisionTreeClassifier(max_depth=4))])Please rerun this cell to show the HTML repr or trust the notebook.
Pipeline(steps=[('transformation',ColumnTransformer(transformers=[('loading_missing_value_imputer',SimpleImputer(),['loading']),('numerical_missing_value_imputer',SimpleImputer(),['loading', 'measurement_3','measurement_4','measurement_5','measurement_6','measurement_7','measurement_8','measurement_9','measurement_10','measurement_11','measurement_12','measurement_13','measurement_14','measurement_15','measurement_16','measurement_17']),('attribute_0_encoder',OneHotEncoder(),['attribute_0']),('attribute_1_encoder',OneHotEncoder(),['attribute_1']),('product_code_encoder',OneHotEncoder(),['product_code'])])),('model', DecisionTreeClassifier(max_depth=4))])
ColumnTransformer(transformers=[('loading_missing_value_imputer',SimpleImputer(), ['loading']),('numerical_missing_value_imputer',SimpleImputer(),['loading', 'measurement_3', 'measurement_4','measurement_5', 'measurement_6','measurement_7', 'measurement_8','measurement_9', 'measurement_10','measurement_11', 'measurement_12','measurement_13', 'measurement_14','measurement_15', 'measurement_16','measurement_17']),('attribute_0_encoder', OneHotEncoder(),['attribute_0']),('attribute_1_encoder', OneHotEncoder(),['attribute_1']),('product_code_encoder', OneHotEncoder(),['product_code'])])
['loading']
SimpleImputer()
['loading', 'measurement_3', 'measurement_4', 'measurement_5', 'measurement_6', 'measurement_7', 'measurement_8', 'measurement_9', 'measurement_10', 'measurement_11', 'measurement_12', 'measurement_13', 'measurement_14', 'measurement_15', 'measurement_16', 'measurement_17']
SimpleImputer()
['attribute_0']
OneHotEncoder()
['attribute_1']
OneHotEncoder()
['product_code']
OneHotEncoder()
DecisionTreeClassifier(max_depth=4)
Evaluation Results
You can find the details about evaluation process and the evaluation results.
Metric | Value |
---|---|
accuracy | 0.7888 |
f1 score | 0.7888 |
How to Get Started with the Model
Use the code below to get started with the model.
Click to expand
import pickle
with open(decision-tree-playground-kaggle/model.pkl, 'rb') as file:
clf = pickle.load(file)
Model Card Authors
This model card is written by following authors:
huggingface
Model Card Contact
You can contact the model card authors through following channels: [More Information Needed]
Citation
Below you can find information related to citation.
BibTeX:
[More Information Needed]
- Downloads last month
- 0
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.