Edit model card

Baseline Model trained on breast_cancernb8gjv4n to apply classification on diagnosis

Metrics of the best model:

accuracy 0.978932

average_precision 0.994309

roc_auc 0.995448

recall_macro 0.976607

f1_macro 0.977365

Name: LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000), dtype: float64

See model plot below:

Pipeline(steps=[('easypreprocessor',EasyPreprocessor(types=                         continuous  dirty_float  ...  free_string  useless

id True False ... False False radius_mean True False ... False False texture_mean True False ... False False perimeter_mean True False ... False False area_mean True False ... False False smoothness_mean True False ... False False compactness_mean True False ... False False concavity_mean Tr... area_worst True False ... False False smoothness_worst True False ... False False compactness_worst True False ... False False concavity_worst True False ... False False concave points_worst True False ... False False symmetry_worst True False ... False False fractal_dimension_worst True False ... False False[31 rows x 7 columns])),('logisticregression',LogisticRegression(C=0.1, class_weight='balanced',max_iter=1000))])

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

Disclaimer: This model is trained with dabl library as a baseline, for better results, use AutoTrain.

Logs of training including the models tried in the process can be found in logs.txt

Downloads last month
0
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using merve/breast_cancernb8gjv4n-diagnosis-classification 1