Edit model card

MOE-SWE-DAN-NO-CODE

MOE-SWE-DAN-NO-CODE is a Mixure of Experts (MoE) made with the following models using LazyMergekit:

🧩 Configuration

base_model: RJuro/munin-neuralbeagle-7b
dtype: float16
gate_mode: cheap_embed
experts:
  - source_model: RJuro/munin-neuralbeagle-7b
    positive_prompts: ["You are a helpful Danish assistant."]
  - source_model: timpal0l/BeagleCatMunin
    positive_prompts: ["You are a helpful Swedish assistant."]
  - source_model: birgermoell/Munin-NeuralBeagle-NorskGPT 
    positive_prompts: ["You are a helpful Norwegian assistant."]
  - source_model: teknium/OpenHermes-2.5-Mistral-7B
    positive_prompts: ["You are a helpful coding assistant."]

πŸ’» Usage

!pip install -qU transformers bitsandbytes accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "merge-crew/MOE-SWE-DAN-NO-CODE"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)

messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
13
Safetensors
Model size
24.2B params
Tensor type
FP16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for merge-crew/MOE-SWE-DAN-NO-CODE