mistral-rand
This model is a fine-tuned version of TheBloke/Mistral-7B-v0.1-GPTQ on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4471
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 15
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.7543 | 0.03 | 50 | 0.9190 |
0.8445 | 0.05 | 100 | 0.7860 |
0.7819 | 0.07 | 150 | 0.7460 |
0.7231 | 0.1 | 200 | 0.7147 |
0.6985 | 0.12 | 250 | 0.6924 |
0.6887 | 0.15 | 300 | 0.6823 |
0.6836 | 0.17 | 350 | 0.6702 |
0.6624 | 0.2 | 400 | 0.6574 |
0.6712 | 0.23 | 450 | 0.6507 |
0.6354 | 0.25 | 500 | 0.6417 |
0.6089 | 0.28 | 550 | 0.6373 |
0.6236 | 0.3 | 600 | 0.6284 |
0.6161 | 0.33 | 650 | 0.6228 |
0.6367 | 0.35 | 700 | 0.6152 |
0.6329 | 0.38 | 750 | 0.6097 |
0.5944 | 0.4 | 800 | 0.6076 |
0.6036 | 0.42 | 850 | 0.6030 |
0.5767 | 0.45 | 900 | 0.5989 |
0.6079 | 0.47 | 950 | 0.5954 |
0.5915 | 0.5 | 1000 | 0.5916 |
0.5911 | 0.53 | 1050 | 0.5859 |
0.5752 | 0.55 | 1100 | 0.5847 |
0.5698 | 0.57 | 1150 | 0.5802 |
0.5813 | 0.6 | 1200 | 0.5754 |
0.5918 | 0.62 | 1250 | 0.5735 |
0.5587 | 0.65 | 1300 | 0.5677 |
0.5933 | 0.68 | 1350 | 0.5620 |
0.5262 | 0.7 | 1400 | 0.5522 |
0.5455 | 0.72 | 1450 | 0.5457 |
0.5472 | 0.75 | 1500 | 0.5416 |
0.536 | 0.78 | 1550 | 0.5400 |
0.527 | 0.8 | 1600 | 0.5393 |
0.5516 | 0.82 | 1650 | 0.5350 |
0.5578 | 0.85 | 1700 | 0.5356 |
0.5501 | 0.88 | 1750 | 0.5297 |
0.5316 | 0.9 | 1800 | 0.5288 |
0.5436 | 0.93 | 1850 | 0.5268 |
0.514 | 0.95 | 1900 | 0.5295 |
0.5249 | 0.97 | 1950 | 0.5246 |
0.538 | 1.0 | 2000 | 0.5226 |
0.4967 | 1.02 | 2050 | 0.5237 |
0.4991 | 1.05 | 2100 | 0.5261 |
0.5142 | 1.07 | 2150 | 0.5203 |
0.4891 | 1.1 | 2200 | 0.5174 |
0.5058 | 1.12 | 2250 | 0.5173 |
0.4895 | 1.15 | 2300 | 0.5182 |
0.4918 | 1.18 | 2350 | 0.5139 |
0.485 | 1.2 | 2400 | 0.5091 |
0.5173 | 1.23 | 2450 | 0.5121 |
0.5021 | 1.25 | 2500 | 0.5116 |
0.4834 | 1.27 | 2550 | 0.5097 |
0.4754 | 1.3 | 2600 | 0.5137 |
0.4907 | 1.32 | 2650 | 0.5059 |
0.5155 | 1.35 | 2700 | 0.5051 |
0.4965 | 1.38 | 2750 | 0.5050 |
0.5148 | 1.4 | 2800 | 0.5043 |
0.4709 | 1.43 | 2850 | 0.5032 |
0.4864 | 1.45 | 2900 | 0.5037 |
0.4794 | 1.48 | 2950 | 0.5029 |
0.4803 | 1.5 | 3000 | 0.5012 |
0.4843 | 1.52 | 3050 | 0.5017 |
0.4726 | 1.55 | 3100 | 0.4984 |
0.4773 | 1.57 | 3150 | 0.4968 |
0.4673 | 1.6 | 3200 | 0.4995 |
0.4803 | 1.62 | 3250 | 0.4990 |
0.4926 | 1.65 | 3300 | 0.4965 |
0.4814 | 1.68 | 3350 | 0.4973 |
0.4714 | 1.7 | 3400 | 0.4930 |
0.4797 | 1.73 | 3450 | 0.4903 |
0.4807 | 1.75 | 3500 | 0.4932 |
0.4815 | 1.77 | 3550 | 0.4888 |
0.4852 | 1.8 | 3600 | 0.4874 |
0.4802 | 1.82 | 3650 | 0.4887 |
0.4701 | 1.85 | 3700 | 0.4897 |
0.4572 | 1.88 | 3750 | 0.4873 |
0.4469 | 1.9 | 3800 | 0.4878 |
0.478 | 1.93 | 3850 | 0.4885 |
0.4449 | 1.95 | 3900 | 0.4866 |
0.4634 | 1.98 | 3950 | 0.4843 |
0.4718 | 2.0 | 4000 | 0.4838 |
0.4458 | 2.02 | 4050 | 0.4822 |
0.461 | 2.05 | 4100 | 0.4801 |
0.4247 | 2.08 | 4150 | 0.4856 |
0.4325 | 2.1 | 4200 | 0.4830 |
0.4354 | 2.12 | 4250 | 0.4827 |
0.4313 | 2.15 | 4300 | 0.4807 |
0.4753 | 2.17 | 4350 | 0.4812 |
0.4442 | 2.2 | 4400 | 0.4833 |
0.4431 | 2.23 | 4450 | 0.4851 |
0.4485 | 2.25 | 4500 | 0.4815 |
0.4416 | 2.27 | 4550 | 0.4813 |
0.4613 | 2.3 | 4600 | 0.4777 |
0.4121 | 2.33 | 4650 | 0.4775 |
0.4311 | 2.35 | 4700 | 0.4768 |
0.4532 | 2.38 | 4750 | 0.4765 |
0.4342 | 2.4 | 4800 | 0.4781 |
0.4189 | 2.42 | 4850 | 0.4743 |
0.443 | 2.45 | 4900 | 0.4742 |
0.4596 | 2.48 | 4950 | 0.4734 |
0.4193 | 2.5 | 5000 | 0.4719 |
0.4321 | 2.52 | 5050 | 0.4723 |
0.4456 | 2.55 | 5100 | 0.4713 |
0.4464 | 2.58 | 5150 | 0.4694 |
0.4273 | 2.6 | 5200 | 0.4700 |
0.4239 | 2.62 | 5250 | 0.4701 |
0.4282 | 2.65 | 5300 | 0.4687 |
0.4303 | 2.67 | 5350 | 0.4686 |
0.4559 | 2.7 | 5400 | 0.4695 |
0.4542 | 2.73 | 5450 | 0.4692 |
0.4532 | 2.75 | 5500 | 0.4685 |
0.4505 | 2.77 | 5550 | 0.4663 |
0.4533 | 2.8 | 5600 | 0.4660 |
0.4351 | 2.83 | 5650 | 0.4640 |
0.4354 | 2.85 | 5700 | 0.4651 |
0.4374 | 2.88 | 5750 | 0.4664 |
0.4571 | 2.9 | 5800 | 0.4662 |
0.4663 | 2.92 | 5850 | 0.4636 |
0.4211 | 2.95 | 5900 | 0.4645 |
0.4349 | 2.98 | 5950 | 0.4622 |
0.4167 | 3.0 | 6000 | 0.4634 |
0.4176 | 3.02 | 6050 | 0.4621 |
0.4387 | 3.05 | 6100 | 0.4607 |
0.395 | 3.08 | 6150 | 0.4638 |
0.4186 | 3.1 | 6200 | 0.4623 |
0.3993 | 3.12 | 6250 | 0.4622 |
0.4009 | 3.15 | 6300 | 0.4631 |
0.4033 | 3.17 | 6350 | 0.4640 |
0.389 | 3.2 | 6400 | 0.4662 |
0.4037 | 3.23 | 6450 | 0.4618 |
0.4287 | 3.25 | 6500 | 0.4617 |
0.3917 | 3.27 | 6550 | 0.4611 |
0.3944 | 3.3 | 6600 | 0.4626 |
0.4088 | 3.33 | 6650 | 0.4622 |
0.4205 | 3.35 | 6700 | 0.4604 |
0.4273 | 3.38 | 6750 | 0.4608 |
0.4139 | 3.4 | 6800 | 0.4607 |
0.3888 | 3.42 | 6850 | 0.4603 |
0.4353 | 3.45 | 6900 | 0.4573 |
0.4222 | 3.48 | 6950 | 0.4577 |
0.4083 | 3.5 | 7000 | 0.4571 |
0.4161 | 3.52 | 7050 | 0.4560 |
0.3879 | 3.55 | 7100 | 0.4540 |
0.3819 | 3.58 | 7150 | 0.4570 |
0.4345 | 3.6 | 7200 | 0.4551 |
0.4101 | 3.62 | 7250 | 0.4569 |
0.4194 | 3.65 | 7300 | 0.4543 |
0.4066 | 3.67 | 7350 | 0.4563 |
0.4144 | 3.7 | 7400 | 0.4553 |
0.4134 | 3.73 | 7450 | 0.4566 |
0.3906 | 3.75 | 7500 | 0.4550 |
0.4128 | 3.77 | 7550 | 0.4546 |
0.4227 | 3.8 | 7600 | 0.4535 |
0.4069 | 3.83 | 7650 | 0.4517 |
0.3927 | 3.85 | 7700 | 0.4548 |
0.3977 | 3.88 | 7750 | 0.4521 |
0.4184 | 3.9 | 7800 | 0.4516 |
0.3854 | 3.92 | 7850 | 0.4513 |
0.4129 | 3.95 | 7900 | 0.4524 |
0.3998 | 3.98 | 7950 | 0.4548 |
0.4227 | 4.0 | 8000 | 0.4534 |
0.3788 | 4.03 | 8050 | 0.4520 |
0.3732 | 4.05 | 8100 | 0.4501 |
0.375 | 4.08 | 8150 | 0.4565 |
0.3845 | 4.1 | 8200 | 0.4515 |
0.378 | 4.12 | 8250 | 0.4492 |
0.3874 | 4.15 | 8300 | 0.4508 |
0.3802 | 4.17 | 8350 | 0.4510 |
0.3596 | 4.2 | 8400 | 0.4524 |
0.4009 | 4.22 | 8450 | 0.4549 |
0.4105 | 4.25 | 8500 | 0.4515 |
0.3716 | 4.28 | 8550 | 0.4508 |
0.3673 | 4.3 | 8600 | 0.4497 |
0.3882 | 4.33 | 8650 | 0.4513 |
0.375 | 4.35 | 8700 | 0.4524 |
0.3654 | 4.38 | 8750 | 0.4503 |
0.3983 | 4.4 | 8800 | 0.4509 |
0.4067 | 4.42 | 8850 | 0.4487 |
0.3966 | 4.45 | 8900 | 0.4519 |
0.378 | 4.47 | 8950 | 0.4505 |
0.3755 | 4.5 | 9000 | 0.4508 |
0.3855 | 4.53 | 9050 | 0.4500 |
0.3938 | 4.55 | 9100 | 0.4527 |
0.3946 | 4.58 | 9150 | 0.4531 |
0.3752 | 4.6 | 9200 | 0.4506 |
0.3723 | 4.62 | 9250 | 0.4459 |
0.3704 | 4.65 | 9300 | 0.4467 |
0.3861 | 4.67 | 9350 | 0.4484 |
0.3965 | 4.7 | 9400 | 0.4481 |
0.3972 | 4.72 | 9450 | 0.4482 |
0.3917 | 4.75 | 9500 | 0.4447 |
0.3688 | 4.78 | 9550 | 0.4473 |
0.3861 | 4.8 | 9600 | 0.4491 |
0.3593 | 4.83 | 9650 | 0.4491 |
0.3916 | 4.85 | 9700 | 0.4432 |
0.3748 | 4.88 | 9750 | 0.4432 |
0.3921 | 4.9 | 9800 | 0.4459 |
0.3745 | 4.92 | 9850 | 0.4457 |
0.4002 | 4.95 | 9900 | 0.4443 |
0.3767 | 4.97 | 9950 | 0.4430 |
0.3537 | 5.0 | 10000 | 0.4470 |
0.3673 | 5.03 | 10050 | 0.4531 |
0.3506 | 5.05 | 10100 | 0.4474 |
0.3506 | 5.08 | 10150 | 0.4497 |
0.3622 | 5.1 | 10200 | 0.4471 |
Framework versions
- PEFT 0.7.1
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
- Downloads last month
- 7
Model tree for megha-shroff/mistral-rand
Base model
mistralai/Mistral-7B-v0.1
Quantized
TheBloke/Mistral-7B-v0.1-GPTQ