|
--- |
|
license: llama3.1 |
|
base_model: |
|
- meta-llama/Llama-3.1-8B |
|
datasets: |
|
- nvidia/OpenMathInstruct-2 |
|
language: |
|
- en |
|
tags: |
|
- nvidia |
|
- math |
|
library_name: transformers |
|
--- |
|
|
|
# OpenMath2-Llama3.1-8B |
|
|
|
OpenMath2-Llama3.1-8B is obtained by finetuning [Llama3.1-8B-Base](https://huggingface.co/meta-llama/Llama-3.1-8B) with [OpenMathInstruct-2](https://huggingface.co/datasets/nvidia/OpenMathInstruct-2). |
|
|
|
The model outperforms [Llama3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) on all the popular math benchmarks we evaluate on, especially on [MATH](https://github.com/hendrycks/math) by 15.9%. |
|
|
|
<!-- <p align="center"> |
|
<img src="scaling_plot.jpg" width="350"><img src="math_level_comp.jpg" width="350"> |
|
</p> --> |
|
|
|
<style> |
|
.image-container { |
|
display: flex; |
|
justify-content: center; |
|
align-items: center; |
|
gap: 20px; |
|
} |
|
.image-container img { |
|
width: 350px; |
|
height: auto; |
|
} |
|
</style> |
|
|
|
<div class="image-container"> |
|
<img src="scaling_plot.jpg" title="Performance of Llama-3.1-8B-Instruct as it is trained on increasing proportions of OpenMathInstruct-2"> |
|
<img src="math_level_comp.jpg" title="Comparison of OpenMath2-Llama3.1-8B vs. Llama-3.1-8B-Instruct across MATH levels"> |
|
</div> |
|
|
|
| Model | GSM8K | MATH | AMC 2023 | AIME 2024 | Omni-MATH | |
|
|:---|:---:|:---:|:---:|:---:|:---:| |
|
| Llama3.1-8B-Instruct | 84.5 | 51.9 | 9/40 | 2/30 | 12.7 | |
|
| **OpenMath2-Llama3.1-8B** ([nemo](https://huggingface.co/nvidia/OpenMath2-Llama3.1-8B-nemo) \| [HF](https://huggingface.co/nvidia/OpenMath2-Llama3.1-8B)) | 91.7 | 67.8 | 16/40 | 3/30 | 22.0 | |
|
| + majority@256 | 94.1 | 76.1 | 23/40 | 3/30 | 24.6 | |
|
| Llama3.1-70B-Instruct | 95.8 | 67.9 | 19/40 | 6/30 | 19.0 | |
|
| OpenMath2-Llama3.1-70B ([nemo](https://huggingface.co/nvidia/OpenMath2-Llama3.1-70B-nemo) \| [HF](https://huggingface.co/nvidia/OpenMath2-Llama3.1-70B)) | 94.9 | 71.9 | 20/40 | 4/30 | 23.1 | |
|
| + majority@256 | 96.0 | 79.6 | 24/40 | 6/30 | 27.6 | |
|
|
|
The pipeline we used to produce the data and models is fully open-sourced! |
|
|
|
- [Code](https://github.com/Kipok/NeMo-Skills) |
|
- [Models](https://huggingface.co/collections/nvidia/openmath-2-66fb142317d86400783d2c7b) |
|
- [Dataset](https://huggingface.co/datasets/nvidia/OpenMathInstruct-2) |
|
|
|
See our [paper](https://arxiv.org/abs/2410.01560) to learn more details! |
|
|
|
# How to use the models? |
|
|
|
Our models are trained with the same "chat format" as Llama3.1-instruct models (same system/user/assistant tokens). |
|
Please note that these models have not been instruction tuned on general data and thus might not provide good answers outside of math domain. |
|
|
|
We recommend using [instructions in our repo](https://github.com/Kipok/NeMo-Skills/blob/main/docs/inference.md) to run inference with these models, but here is |
|
an example of how to do it through transformers api: |
|
|
|
```python |
|
import transformers |
|
import torch |
|
|
|
model_id = "nvidia/OpenMath2-Llama3.1-8B" |
|
|
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model_id, |
|
model_kwargs={"torch_dtype": torch.bfloat16}, |
|
device_map="auto", |
|
) |
|
|
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": "Solve the following math problem. Make sure to put the answer (and only answer) inside \\boxed{}.\n\n" + |
|
"What is the minimum value of $a^2+6a-7$?"}, |
|
] |
|
|
|
outputs = pipeline( |
|
messages, |
|
max_new_tokens=4096, |
|
) |
|
print(outputs[0]["generated_text"][-1]['content']) |
|
``` |
|
|
|
# Reproducing our results |
|
|
|
We provide [all instructions](https://github.com/Kipok/NeMo-Skills/blob/main/docs/reproducing-results.md) to fully reproduce our results. |
|
|
|
## Citation |
|
|
|
If you find our work useful, please consider citing us! |
|
|
|
```bibtex |
|
@article{toshniwal2024openmath2, |
|
title = {OpenMathInstruct-2: Accelerating AI for Math with Massive Open-Source Instruction Data}, |
|
author = {Shubham Toshniwal and Wei Du and Ivan Moshkov and Branislav Kisacanin and Alexan Ayrapetyan and Igor Gitman}, |
|
year = {2024}, |
|
journal = {arXiv preprint arXiv:2410.01560} |
|
} |
|
``` |
|
|
|
## Terms of use |
|
|
|
By accessing this model, you are agreeing to the LLama 3.1 terms and conditions of the [license](https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE), [acceptable use policy](https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/USE_POLICY.md) and [Meta’s privacy policy](https://www.facebook.com/privacy/policy/) |