|
import math |
|
|
|
import torch |
|
import torch.nn as nn |
|
from mmcv.cnn.bricks.transformer import POSITIONAL_ENCODING |
|
from mmcv.runner import BaseModule |
|
|
|
|
|
@POSITIONAL_ENCODING.register_module() |
|
class SinePositionalEncoding(BaseModule): |
|
"""Position encoding with sine and cosine functions. |
|
See `End-to-End Object Detection with Transformers |
|
<https://arxiv.org/pdf/2005.12872>`_ for details. |
|
Args: |
|
num_feats (int): The feature dimension for each position |
|
along x-axis or y-axis. Note the final returned dimension |
|
for each position is 2 times of this value. |
|
temperature (int, optional): The temperature used for scaling |
|
the position embedding. Defaults to 10000. |
|
normalize (bool, optional): Whether to normalize the position |
|
embedding. Defaults to False. |
|
scale (float, optional): A scale factor that scales the position |
|
embedding. The scale will be used only when `normalize` is True. |
|
Defaults to 2*pi. |
|
eps (float, optional): A value added to the denominator for |
|
numerical stability. Defaults to 1e-6. |
|
offset (float): offset add to embed when do the normalization. |
|
Defaults to 0. |
|
init_cfg (dict or list[dict], optional): Initialization config dict. |
|
Default: None |
|
""" |
|
|
|
def __init__(self, |
|
num_feats, |
|
temperature=10000, |
|
normalize=False, |
|
scale=2 * math.pi, |
|
eps=1e-6, |
|
offset=0., |
|
init_cfg=None): |
|
super(SinePositionalEncoding, self).__init__(init_cfg) |
|
if normalize: |
|
assert isinstance(scale, (float, int)), 'when normalize is set,' \ |
|
'scale should be provided and in float or int type, ' \ |
|
f'found {type(scale)}' |
|
self.num_feats = num_feats |
|
self.temperature = temperature |
|
self.normalize = normalize |
|
self.scale = scale |
|
self.eps = eps |
|
self.offset = offset |
|
|
|
def forward(self, mask): |
|
"""Forward function for `SinePositionalEncoding`. |
|
Args: |
|
mask (Tensor): ByteTensor mask. Non-zero values representing |
|
ignored positions, while zero values means valid positions |
|
for this image. Shape [bs, h, w]. |
|
Returns: |
|
pos (Tensor): Returned position embedding with shape |
|
[bs, num_feats*2, h, w]. |
|
""" |
|
|
|
|
|
mask = mask.to(torch.int) |
|
not_mask = 1 - mask |
|
y_embed = not_mask.cumsum(1, dtype=torch.float32) |
|
x_embed = not_mask.cumsum(2, dtype=torch.float32) |
|
if self.normalize: |
|
y_embed = (y_embed + self.offset) / \ |
|
(y_embed[:, -1:, :] + self.eps) * self.scale |
|
x_embed = (x_embed + self.offset) / \ |
|
(x_embed[:, :, -1:] + self.eps) * self.scale |
|
dim_t = torch.arange( |
|
self.num_feats, dtype=torch.float32, device=mask.device) |
|
dim_t = self.temperature**(2 * (dim_t // 2) / self.num_feats) |
|
pos_x = x_embed[:, :, :, None] / dim_t |
|
pos_y = y_embed[:, :, :, None] / dim_t |
|
|
|
B, H, W = mask.size() |
|
pos_x = torch.stack( |
|
(pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), |
|
dim=4).view(B, H, W, -1) |
|
pos_y = torch.stack( |
|
(pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), |
|
dim=4).view(B, H, W, -1) |
|
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) |
|
return pos |
|
|
|
def __repr__(self): |
|
"""str: a string that describes the module""" |
|
repr_str = self.__class__.__name__ |
|
repr_str += f'(num_feats={self.num_feats}, ' |
|
repr_str += f'temperature={self.temperature}, ' |
|
repr_str += f'normalize={self.normalize}, ' |
|
repr_str += f'scale={self.scale}, ' |
|
repr_str += f'eps={self.eps})' |
|
return repr_str |
|
|
|
|
|
@POSITIONAL_ENCODING.register_module() |
|
class LearnedPositionalEncoding(BaseModule): |
|
"""Position embedding with learnable embedding weights. |
|
Args: |
|
num_feats (int): The feature dimension for each position |
|
along x-axis or y-axis. The final returned dimension for |
|
each position is 2 times of this value. |
|
row_num_embed (int, optional): The dictionary size of row embeddings. |
|
Default 50. |
|
col_num_embed (int, optional): The dictionary size of col embeddings. |
|
Default 50. |
|
init_cfg (dict or list[dict], optional): Initialization config dict. |
|
""" |
|
|
|
def __init__(self, |
|
num_feats, |
|
row_num_embed=50, |
|
col_num_embed=50, |
|
init_cfg=dict(type='Uniform', layer='Embedding')): |
|
super(LearnedPositionalEncoding, self).__init__(init_cfg) |
|
self.row_embed = nn.Embedding(row_num_embed, num_feats) |
|
self.col_embed = nn.Embedding(col_num_embed, num_feats) |
|
self.num_feats = num_feats |
|
self.row_num_embed = row_num_embed |
|
self.col_num_embed = col_num_embed |
|
|
|
def forward(self, mask): |
|
"""Forward function for `LearnedPositionalEncoding`. |
|
Args: |
|
mask (Tensor): ByteTensor mask. Non-zero values representing |
|
ignored positions, while zero values means valid positions |
|
for this image. Shape [bs, h, w]. |
|
Returns: |
|
pos (Tensor): Returned position embedding with shape |
|
[bs, num_feats*2, h, w]. |
|
""" |
|
h, w = mask.shape[-2:] |
|
x = torch.arange(w, device=mask.device) |
|
y = torch.arange(h, device=mask.device) |
|
x_embed = self.col_embed(x) |
|
y_embed = self.row_embed(y) |
|
pos = torch.cat( |
|
(x_embed.unsqueeze(0).repeat(h, 1, 1), y_embed.unsqueeze(1).repeat( |
|
1, w, 1)), |
|
dim=-1).permute(2, 0, |
|
1).unsqueeze(0).repeat(mask.shape[0], 1, 1, 1) |
|
return pos |
|
|
|
def __repr__(self): |
|
"""str: a string that describes the module""" |
|
repr_str = self.__class__.__name__ |
|
repr_str += f'(num_feats={self.num_feats}, ' |
|
repr_str += f'row_num_embed={self.row_num_embed}, ' |
|
repr_str += f'col_num_embed={self.col_num_embed})' |
|
return repr_str |