|
|
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from ..builder import LOSSES |
|
|
|
|
|
@LOSSES.register_module() |
|
class BCELoss(nn.Module): |
|
"""Binary Cross Entropy loss.""" |
|
|
|
def __init__(self, use_target_weight=False, loss_weight=1.): |
|
super().__init__() |
|
self.criterion = F.binary_cross_entropy |
|
self.use_target_weight = use_target_weight |
|
self.loss_weight = loss_weight |
|
|
|
def forward(self, output, target, target_weight=None): |
|
"""Forward function. |
|
|
|
Note: |
|
- batch_size: N |
|
- num_labels: K |
|
|
|
Args: |
|
output (torch.Tensor[N, K]): Output classification. |
|
target (torch.Tensor[N, K]): Target classification. |
|
target_weight (torch.Tensor[N, K] or torch.Tensor[N]): |
|
Weights across different labels. |
|
""" |
|
|
|
if self.use_target_weight: |
|
assert target_weight is not None |
|
loss = self.criterion(output, target, reduction='none') |
|
if target_weight.dim() == 1: |
|
target_weight = target_weight[:, None] |
|
loss = (loss * target_weight).mean() |
|
else: |
|
loss = self.criterion(output, target) |
|
|
|
return loss * self.loss_weight |
|
|