|
|
|
import copy |
|
import logging |
|
|
|
import torch.nn as nn |
|
from mmcv.cnn import ConvModule |
|
from torch.nn.modules.batchnorm import _BatchNorm |
|
|
|
from ..builder import BACKBONES |
|
from .base_backbone import BaseBackbone |
|
from .utils import InvertedResidual, load_checkpoint |
|
|
|
|
|
@BACKBONES.register_module() |
|
class ViPNAS_MobileNetV3(BaseBackbone): |
|
"""ViPNAS_MobileNetV3 backbone. |
|
|
|
"ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search" |
|
More details can be found in the `paper |
|
<https://arxiv.org/abs/2105.10154>`__ . |
|
|
|
Args: |
|
wid (list(int)): Searched width config for each stage. |
|
expan (list(int)): Searched expansion ratio config for each stage. |
|
dep (list(int)): Searched depth config for each stage. |
|
ks (list(int)): Searched kernel size config for each stage. |
|
group (list(int)): Searched group number config for each stage. |
|
att (list(bool)): Searched attention config for each stage. |
|
stride (list(int)): Stride config for each stage. |
|
act (list(dict)): Activation config for each stage. |
|
conv_cfg (dict): Config dict for convolution layer. |
|
Default: None, which means using conv2d. |
|
norm_cfg (dict): Config dict for normalization layer. |
|
Default: dict(type='BN'). |
|
frozen_stages (int): Stages to be frozen (all param fixed). |
|
Default: -1, which means not freezing any parameters. |
|
norm_eval (bool): Whether to set norm layers to eval mode, namely, |
|
freeze running stats (mean and var). Note: Effect on Batch Norm |
|
and its variants only. Default: False. |
|
with_cp (bool): Use checkpoint or not. Using checkpoint will save |
|
some memory while slowing down the training speed. |
|
Default: False. |
|
""" |
|
|
|
def __init__(self, |
|
wid=[16, 16, 24, 40, 80, 112, 160], |
|
expan=[None, 1, 5, 4, 5, 5, 6], |
|
dep=[None, 1, 4, 4, 4, 4, 4], |
|
ks=[3, 3, 7, 7, 5, 7, 5], |
|
group=[None, 8, 120, 20, 100, 280, 240], |
|
att=[None, True, True, False, True, True, True], |
|
stride=[2, 1, 2, 2, 2, 1, 2], |
|
act=[ |
|
'HSwish', 'ReLU', 'ReLU', 'ReLU', 'HSwish', 'HSwish', |
|
'HSwish' |
|
], |
|
conv_cfg=None, |
|
norm_cfg=dict(type='BN'), |
|
frozen_stages=-1, |
|
norm_eval=False, |
|
with_cp=False): |
|
|
|
norm_cfg = copy.deepcopy(norm_cfg) |
|
super().__init__() |
|
self.wid = wid |
|
self.expan = expan |
|
self.dep = dep |
|
self.ks = ks |
|
self.group = group |
|
self.att = att |
|
self.stride = stride |
|
self.act = act |
|
self.conv_cfg = conv_cfg |
|
self.norm_cfg = norm_cfg |
|
self.frozen_stages = frozen_stages |
|
self.norm_eval = norm_eval |
|
self.with_cp = with_cp |
|
|
|
self.conv1 = ConvModule( |
|
in_channels=3, |
|
out_channels=self.wid[0], |
|
kernel_size=self.ks[0], |
|
stride=self.stride[0], |
|
padding=self.ks[0] // 2, |
|
conv_cfg=conv_cfg, |
|
norm_cfg=norm_cfg, |
|
act_cfg=dict(type=self.act[0])) |
|
|
|
self.layers = self._make_layer() |
|
|
|
def _make_layer(self): |
|
layers = [] |
|
layer_index = 0 |
|
for i, dep in enumerate(self.dep[1:]): |
|
mid_channels = self.wid[i + 1] * self.expan[i + 1] |
|
|
|
if self.att[i + 1]: |
|
se_cfg = dict( |
|
channels=mid_channels, |
|
ratio=4, |
|
act_cfg=(dict(type='ReLU'), dict(type='HSigmoid'))) |
|
else: |
|
se_cfg = None |
|
|
|
if self.expan[i + 1] == 1: |
|
with_expand_conv = False |
|
else: |
|
with_expand_conv = True |
|
|
|
for j in range(dep): |
|
if j == 0: |
|
stride = self.stride[i + 1] |
|
in_channels = self.wid[i] |
|
else: |
|
stride = 1 |
|
in_channels = self.wid[i + 1] |
|
|
|
layer = InvertedResidual( |
|
in_channels=in_channels, |
|
out_channels=self.wid[i + 1], |
|
mid_channels=mid_channels, |
|
kernel_size=self.ks[i + 1], |
|
groups=self.group[i + 1], |
|
stride=stride, |
|
se_cfg=se_cfg, |
|
with_expand_conv=with_expand_conv, |
|
conv_cfg=self.conv_cfg, |
|
norm_cfg=self.norm_cfg, |
|
act_cfg=dict(type=self.act[i + 1]), |
|
with_cp=self.with_cp) |
|
layer_index += 1 |
|
layer_name = f'layer{layer_index}' |
|
self.add_module(layer_name, layer) |
|
layers.append(layer_name) |
|
return layers |
|
|
|
def init_weights(self, pretrained=None): |
|
if isinstance(pretrained, str): |
|
logger = logging.getLogger() |
|
load_checkpoint(self, pretrained, strict=False, logger=logger) |
|
elif pretrained is None: |
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.normal_(m.weight, std=0.001) |
|
for name, _ in m.named_parameters(): |
|
if name in ['bias']: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.BatchNorm2d): |
|
nn.init.constant_(m.weight, 1) |
|
nn.init.constant_(m.bias, 0) |
|
else: |
|
raise TypeError('pretrained must be a str or None') |
|
|
|
def forward(self, x): |
|
x = self.conv1(x) |
|
|
|
for i, layer_name in enumerate(self.layers): |
|
layer = getattr(self, layer_name) |
|
x = layer(x) |
|
|
|
return x |
|
|
|
def _freeze_stages(self): |
|
if self.frozen_stages >= 0: |
|
for param in self.conv1.parameters(): |
|
param.requires_grad = False |
|
for i in range(1, self.frozen_stages + 1): |
|
layer = getattr(self, f'layer{i}') |
|
layer.eval() |
|
for param in layer.parameters(): |
|
param.requires_grad = False |
|
|
|
def train(self, mode=True): |
|
super().train(mode) |
|
self._freeze_stages() |
|
if mode and self.norm_eval: |
|
for m in self.modules(): |
|
if isinstance(m, _BatchNorm): |
|
m.eval() |
|
|