|
|
|
import copy |
|
import logging |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.utils.checkpoint as cp |
|
from mmcv.cnn import (ConvModule, build_activation_layer, constant_init, |
|
normal_init) |
|
from torch.nn.modules.batchnorm import _BatchNorm |
|
|
|
from ..builder import BACKBONES |
|
from .base_backbone import BaseBackbone |
|
from .utils import channel_shuffle, load_checkpoint, make_divisible |
|
|
|
|
|
class ShuffleUnit(nn.Module): |
|
"""ShuffleUnit block. |
|
|
|
ShuffleNet unit with pointwise group convolution (GConv) and channel |
|
shuffle. |
|
|
|
Args: |
|
in_channels (int): The input channels of the ShuffleUnit. |
|
out_channels (int): The output channels of the ShuffleUnit. |
|
groups (int, optional): The number of groups to be used in grouped 1x1 |
|
convolutions in each ShuffleUnit. Default: 3 |
|
first_block (bool, optional): Whether it is the first ShuffleUnit of a |
|
sequential ShuffleUnits. Default: True, which means not using the |
|
grouped 1x1 convolution. |
|
combine (str, optional): The ways to combine the input and output |
|
branches. Default: 'add'. |
|
conv_cfg (dict): Config dict for convolution layer. Default: None, |
|
which means using conv2d. |
|
norm_cfg (dict): Config dict for normalization layer. |
|
Default: dict(type='BN'). |
|
act_cfg (dict): Config dict for activation layer. |
|
Default: dict(type='ReLU'). |
|
with_cp (bool, optional): Use checkpoint or not. Using checkpoint |
|
will save some memory while slowing down the training speed. |
|
Default: False. |
|
|
|
Returns: |
|
Tensor: The output tensor. |
|
""" |
|
|
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
groups=3, |
|
first_block=True, |
|
combine='add', |
|
conv_cfg=None, |
|
norm_cfg=dict(type='BN'), |
|
act_cfg=dict(type='ReLU'), |
|
with_cp=False): |
|
|
|
norm_cfg = copy.deepcopy(norm_cfg) |
|
act_cfg = copy.deepcopy(act_cfg) |
|
super().__init__() |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.first_block = first_block |
|
self.combine = combine |
|
self.groups = groups |
|
self.bottleneck_channels = self.out_channels // 4 |
|
self.with_cp = with_cp |
|
|
|
if self.combine == 'add': |
|
self.depthwise_stride = 1 |
|
self._combine_func = self._add |
|
assert in_channels == out_channels, ( |
|
'in_channels must be equal to out_channels when combine ' |
|
'is add') |
|
elif self.combine == 'concat': |
|
self.depthwise_stride = 2 |
|
self._combine_func = self._concat |
|
self.out_channels -= self.in_channels |
|
self.avgpool = nn.AvgPool2d(kernel_size=3, stride=2, padding=1) |
|
else: |
|
raise ValueError(f'Cannot combine tensors with {self.combine}. ' |
|
'Only "add" and "concat" are supported') |
|
|
|
self.first_1x1_groups = 1 if first_block else self.groups |
|
self.g_conv_1x1_compress = ConvModule( |
|
in_channels=self.in_channels, |
|
out_channels=self.bottleneck_channels, |
|
kernel_size=1, |
|
groups=self.first_1x1_groups, |
|
conv_cfg=conv_cfg, |
|
norm_cfg=norm_cfg, |
|
act_cfg=act_cfg) |
|
|
|
self.depthwise_conv3x3_bn = ConvModule( |
|
in_channels=self.bottleneck_channels, |
|
out_channels=self.bottleneck_channels, |
|
kernel_size=3, |
|
stride=self.depthwise_stride, |
|
padding=1, |
|
groups=self.bottleneck_channels, |
|
conv_cfg=conv_cfg, |
|
norm_cfg=norm_cfg, |
|
act_cfg=None) |
|
|
|
self.g_conv_1x1_expand = ConvModule( |
|
in_channels=self.bottleneck_channels, |
|
out_channels=self.out_channels, |
|
kernel_size=1, |
|
groups=self.groups, |
|
conv_cfg=conv_cfg, |
|
norm_cfg=norm_cfg, |
|
act_cfg=None) |
|
|
|
self.act = build_activation_layer(act_cfg) |
|
|
|
@staticmethod |
|
def _add(x, out): |
|
|
|
return x + out |
|
|
|
@staticmethod |
|
def _concat(x, out): |
|
|
|
return torch.cat((x, out), 1) |
|
|
|
def forward(self, x): |
|
|
|
def _inner_forward(x): |
|
residual = x |
|
|
|
out = self.g_conv_1x1_compress(x) |
|
out = self.depthwise_conv3x3_bn(out) |
|
|
|
if self.groups > 1: |
|
out = channel_shuffle(out, self.groups) |
|
|
|
out = self.g_conv_1x1_expand(out) |
|
|
|
if self.combine == 'concat': |
|
residual = self.avgpool(residual) |
|
out = self.act(out) |
|
out = self._combine_func(residual, out) |
|
else: |
|
out = self._combine_func(residual, out) |
|
out = self.act(out) |
|
return out |
|
|
|
if self.with_cp and x.requires_grad: |
|
out = cp.checkpoint(_inner_forward, x) |
|
else: |
|
out = _inner_forward(x) |
|
|
|
return out |
|
|
|
|
|
@BACKBONES.register_module() |
|
class ShuffleNetV1(BaseBackbone): |
|
"""ShuffleNetV1 backbone. |
|
|
|
Args: |
|
groups (int, optional): The number of groups to be used in grouped 1x1 |
|
convolutions in each ShuffleUnit. Default: 3. |
|
widen_factor (float, optional): Width multiplier - adjusts the number |
|
of channels in each layer by this amount. Default: 1.0. |
|
out_indices (Sequence[int]): Output from which stages. |
|
Default: (2, ) |
|
frozen_stages (int): Stages to be frozen (all param fixed). |
|
Default: -1, which means not freezing any parameters. |
|
conv_cfg (dict): Config dict for convolution layer. Default: None, |
|
which means using conv2d. |
|
norm_cfg (dict): Config dict for normalization layer. |
|
Default: dict(type='BN'). |
|
act_cfg (dict): Config dict for activation layer. |
|
Default: dict(type='ReLU'). |
|
norm_eval (bool): Whether to set norm layers to eval mode, namely, |
|
freeze running stats (mean and var). Note: Effect on Batch Norm |
|
and its variants only. Default: False. |
|
with_cp (bool): Use checkpoint or not. Using checkpoint will save some |
|
memory while slowing down the training speed. Default: False. |
|
""" |
|
|
|
def __init__(self, |
|
groups=3, |
|
widen_factor=1.0, |
|
out_indices=(2, ), |
|
frozen_stages=-1, |
|
conv_cfg=None, |
|
norm_cfg=dict(type='BN'), |
|
act_cfg=dict(type='ReLU'), |
|
norm_eval=False, |
|
with_cp=False): |
|
|
|
norm_cfg = copy.deepcopy(norm_cfg) |
|
act_cfg = copy.deepcopy(act_cfg) |
|
super().__init__() |
|
self.stage_blocks = [4, 8, 4] |
|
self.groups = groups |
|
|
|
for index in out_indices: |
|
if index not in range(0, 3): |
|
raise ValueError('the item in out_indices must in ' |
|
f'range(0, 3). But received {index}') |
|
|
|
if frozen_stages not in range(-1, 3): |
|
raise ValueError('frozen_stages must be in range(-1, 3). ' |
|
f'But received {frozen_stages}') |
|
self.out_indices = out_indices |
|
self.frozen_stages = frozen_stages |
|
self.conv_cfg = conv_cfg |
|
self.norm_cfg = norm_cfg |
|
self.act_cfg = act_cfg |
|
self.norm_eval = norm_eval |
|
self.with_cp = with_cp |
|
|
|
if groups == 1: |
|
channels = (144, 288, 576) |
|
elif groups == 2: |
|
channels = (200, 400, 800) |
|
elif groups == 3: |
|
channels = (240, 480, 960) |
|
elif groups == 4: |
|
channels = (272, 544, 1088) |
|
elif groups == 8: |
|
channels = (384, 768, 1536) |
|
else: |
|
raise ValueError(f'{groups} groups is not supported for 1x1 ' |
|
'Grouped Convolutions') |
|
|
|
channels = [make_divisible(ch * widen_factor, 8) for ch in channels] |
|
|
|
self.in_channels = int(24 * widen_factor) |
|
|
|
self.conv1 = ConvModule( |
|
in_channels=3, |
|
out_channels=self.in_channels, |
|
kernel_size=3, |
|
stride=2, |
|
padding=1, |
|
conv_cfg=conv_cfg, |
|
norm_cfg=norm_cfg, |
|
act_cfg=act_cfg) |
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) |
|
|
|
self.layers = nn.ModuleList() |
|
for i, num_blocks in enumerate(self.stage_blocks): |
|
first_block = (i == 0) |
|
layer = self.make_layer(channels[i], num_blocks, first_block) |
|
self.layers.append(layer) |
|
|
|
def _freeze_stages(self): |
|
if self.frozen_stages >= 0: |
|
for param in self.conv1.parameters(): |
|
param.requires_grad = False |
|
for i in range(self.frozen_stages): |
|
layer = self.layers[i] |
|
layer.eval() |
|
for param in layer.parameters(): |
|
param.requires_grad = False |
|
|
|
def init_weights(self, pretrained=None): |
|
if isinstance(pretrained, str): |
|
logger = logging.getLogger() |
|
load_checkpoint(self, pretrained, strict=False, logger=logger) |
|
elif pretrained is None: |
|
for name, m in self.named_modules(): |
|
if isinstance(m, nn.Conv2d): |
|
if 'conv1' in name: |
|
normal_init(m, mean=0, std=0.01) |
|
else: |
|
normal_init(m, mean=0, std=1.0 / m.weight.shape[1]) |
|
elif isinstance(m, (_BatchNorm, nn.GroupNorm)): |
|
constant_init(m, val=1, bias=0.0001) |
|
if isinstance(m, _BatchNorm): |
|
if m.running_mean is not None: |
|
nn.init.constant_(m.running_mean, 0) |
|
else: |
|
raise TypeError('pretrained must be a str or None. But received ' |
|
f'{type(pretrained)}') |
|
|
|
def make_layer(self, out_channels, num_blocks, first_block=False): |
|
"""Stack ShuffleUnit blocks to make a layer. |
|
|
|
Args: |
|
out_channels (int): out_channels of the block. |
|
num_blocks (int): Number of blocks. |
|
first_block (bool, optional): Whether is the first ShuffleUnit of a |
|
sequential ShuffleUnits. Default: False, which means using |
|
the grouped 1x1 convolution. |
|
""" |
|
layers = [] |
|
for i in range(num_blocks): |
|
first_block = first_block if i == 0 else False |
|
combine_mode = 'concat' if i == 0 else 'add' |
|
layers.append( |
|
ShuffleUnit( |
|
self.in_channels, |
|
out_channels, |
|
groups=self.groups, |
|
first_block=first_block, |
|
combine=combine_mode, |
|
conv_cfg=self.conv_cfg, |
|
norm_cfg=self.norm_cfg, |
|
act_cfg=self.act_cfg, |
|
with_cp=self.with_cp)) |
|
self.in_channels = out_channels |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
x = self.conv1(x) |
|
x = self.maxpool(x) |
|
|
|
outs = [] |
|
for i, layer in enumerate(self.layers): |
|
x = layer(x) |
|
if i in self.out_indices: |
|
outs.append(x) |
|
|
|
if len(outs) == 1: |
|
return outs[0] |
|
return tuple(outs) |
|
|
|
def train(self, mode=True): |
|
super().train(mode) |
|
self._freeze_stages() |
|
if mode and self.norm_eval: |
|
for m in self.modules(): |
|
if isinstance(m, _BatchNorm): |
|
m.eval() |
|
|