mart9992's picture
m
2cd560a
# Copyright (c) OpenMMLab. All rights reserved.
from mmcv.cnn import build_conv_layer, build_norm_layer
from ..builder import BACKBONES
from .resnet import ResLayer
from .seresnet import SEBottleneck as _SEBottleneck
from .seresnet import SEResNet
class SEBottleneck(_SEBottleneck):
"""SEBottleneck block for SEResNeXt.
Args:
in_channels (int): Input channels of this block.
out_channels (int): Output channels of this block.
base_channels (int): Middle channels of the first stage. Default: 64.
groups (int): Groups of conv2.
width_per_group (int): Width per group of conv2. 64x4d indicates
``groups=64, width_per_group=4`` and 32x8d indicates
``groups=32, width_per_group=8``.
stride (int): stride of the block. Default: 1
dilation (int): dilation of convolution. Default: 1
downsample (nn.Module): downsample operation on identity branch.
Default: None
se_ratio (int): Squeeze ratio in SELayer. Default: 16
style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two
layer is the 3x3 conv layer, otherwise the stride-two layer is
the first 1x1 conv layer.
conv_cfg (dict): dictionary to construct and config conv layer.
Default: None
norm_cfg (dict): dictionary to construct and config norm layer.
Default: dict(type='BN')
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed.
"""
def __init__(self,
in_channels,
out_channels,
base_channels=64,
groups=32,
width_per_group=4,
se_ratio=16,
**kwargs):
super().__init__(in_channels, out_channels, se_ratio, **kwargs)
self.groups = groups
self.width_per_group = width_per_group
# We follow the same rational of ResNext to compute mid_channels.
# For SEResNet bottleneck, middle channels are determined by expansion
# and out_channels, but for SEResNeXt bottleneck, it is determined by
# groups and width_per_group and the stage it is located in.
if groups != 1:
assert self.mid_channels % base_channels == 0
self.mid_channels = (
groups * width_per_group * self.mid_channels // base_channels)
self.norm1_name, norm1 = build_norm_layer(
self.norm_cfg, self.mid_channels, postfix=1)
self.norm2_name, norm2 = build_norm_layer(
self.norm_cfg, self.mid_channels, postfix=2)
self.norm3_name, norm3 = build_norm_layer(
self.norm_cfg, self.out_channels, postfix=3)
self.conv1 = build_conv_layer(
self.conv_cfg,
self.in_channels,
self.mid_channels,
kernel_size=1,
stride=self.conv1_stride,
bias=False)
self.add_module(self.norm1_name, norm1)
self.conv2 = build_conv_layer(
self.conv_cfg,
self.mid_channels,
self.mid_channels,
kernel_size=3,
stride=self.conv2_stride,
padding=self.dilation,
dilation=self.dilation,
groups=groups,
bias=False)
self.add_module(self.norm2_name, norm2)
self.conv3 = build_conv_layer(
self.conv_cfg,
self.mid_channels,
self.out_channels,
kernel_size=1,
bias=False)
self.add_module(self.norm3_name, norm3)
@BACKBONES.register_module()
class SEResNeXt(SEResNet):
"""SEResNeXt backbone.
Please refer to the `paper <https://arxiv.org/abs/1709.01507>`__ for
details.
Args:
depth (int): Network depth, from {50, 101, 152}.
groups (int): Groups of conv2 in Bottleneck. Default: 32.
width_per_group (int): Width per group of conv2 in Bottleneck.
Default: 4.
se_ratio (int): Squeeze ratio in SELayer. Default: 16.
in_channels (int): Number of input image channels. Default: 3.
stem_channels (int): Output channels of the stem layer. Default: 64.
num_stages (int): Stages of the network. Default: 4.
strides (Sequence[int]): Strides of the first block of each stage.
Default: ``(1, 2, 2, 2)``.
dilations (Sequence[int]): Dilation of each stage.
Default: ``(1, 1, 1, 1)``.
out_indices (Sequence[int]): Output from which stages. If only one
stage is specified, a single tensor (feature map) is returned,
otherwise multiple stages are specified, a tuple of tensors will
be returned. Default: ``(3, )``.
style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two
layer is the 3x3 conv layer, otherwise the stride-two layer is
the first 1x1 conv layer.
deep_stem (bool): Replace 7x7 conv in input stem with 3 3x3 conv.
Default: False.
avg_down (bool): Use AvgPool instead of stride conv when
downsampling in the bottleneck. Default: False.
frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
-1 means not freezing any parameters. Default: -1.
conv_cfg (dict | None): The config dict for conv layers. Default: None.
norm_cfg (dict): The config dict for norm layers.
norm_eval (bool): Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only. Default: False.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Default: False.
zero_init_residual (bool): Whether to use zero init for last norm layer
in resblocks to let them behave as identity. Default: True.
Example:
>>> from mmpose.models import SEResNeXt
>>> import torch
>>> self = SEResNet(depth=50, out_indices=(0, 1, 2, 3))
>>> self.eval()
>>> inputs = torch.rand(1, 3, 224, 224)
>>> level_outputs = self.forward(inputs)
>>> for level_out in level_outputs:
... print(tuple(level_out.shape))
(1, 256, 56, 56)
(1, 512, 28, 28)
(1, 1024, 14, 14)
(1, 2048, 7, 7)
"""
arch_settings = {
50: (SEBottleneck, (3, 4, 6, 3)),
101: (SEBottleneck, (3, 4, 23, 3)),
152: (SEBottleneck, (3, 8, 36, 3))
}
def __init__(self, depth, groups=32, width_per_group=4, **kwargs):
self.groups = groups
self.width_per_group = width_per_group
super().__init__(depth, **kwargs)
def make_res_layer(self, **kwargs):
return ResLayer(
groups=self.groups,
width_per_group=self.width_per_group,
base_channels=self.base_channels,
**kwargs)