|
|
|
import copy |
|
|
|
import torch.nn as nn |
|
import torch.utils.checkpoint as cp |
|
from mmcv.cnn import (ConvModule, build_conv_layer, build_norm_layer, |
|
constant_init, kaiming_init) |
|
from mmcv.utils.parrots_wrapper import _BatchNorm |
|
|
|
from ..builder import BACKBONES |
|
from .base_backbone import BaseBackbone |
|
|
|
|
|
class BasicBlock(nn.Module): |
|
"""BasicBlock for ResNet. |
|
|
|
Args: |
|
in_channels (int): Input channels of this block. |
|
out_channels (int): Output channels of this block. |
|
expansion (int): The ratio of ``out_channels/mid_channels`` where |
|
``mid_channels`` is the output channels of conv1. This is a |
|
reserved argument in BasicBlock and should always be 1. Default: 1. |
|
stride (int): stride of the block. Default: 1 |
|
dilation (int): dilation of convolution. Default: 1 |
|
downsample (nn.Module): downsample operation on identity branch. |
|
Default: None. |
|
style (str): `pytorch` or `caffe`. It is unused and reserved for |
|
unified API with Bottleneck. |
|
with_cp (bool): Use checkpoint or not. Using checkpoint will save some |
|
memory while slowing down the training speed. |
|
conv_cfg (dict): dictionary to construct and config conv layer. |
|
Default: None |
|
norm_cfg (dict): dictionary to construct and config norm layer. |
|
Default: dict(type='BN') |
|
""" |
|
|
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
expansion=1, |
|
stride=1, |
|
dilation=1, |
|
downsample=None, |
|
style='pytorch', |
|
with_cp=False, |
|
conv_cfg=None, |
|
norm_cfg=dict(type='BN')): |
|
|
|
norm_cfg = copy.deepcopy(norm_cfg) |
|
super().__init__() |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.expansion = expansion |
|
assert self.expansion == 1 |
|
assert out_channels % expansion == 0 |
|
self.mid_channels = out_channels // expansion |
|
self.stride = stride |
|
self.dilation = dilation |
|
self.style = style |
|
self.with_cp = with_cp |
|
self.conv_cfg = conv_cfg |
|
self.norm_cfg = norm_cfg |
|
|
|
self.norm1_name, norm1 = build_norm_layer( |
|
norm_cfg, self.mid_channels, postfix=1) |
|
self.norm2_name, norm2 = build_norm_layer( |
|
norm_cfg, out_channels, postfix=2) |
|
|
|
self.conv1 = build_conv_layer( |
|
conv_cfg, |
|
in_channels, |
|
self.mid_channels, |
|
3, |
|
stride=stride, |
|
padding=dilation, |
|
dilation=dilation, |
|
bias=False) |
|
self.add_module(self.norm1_name, norm1) |
|
self.conv2 = build_conv_layer( |
|
conv_cfg, |
|
self.mid_channels, |
|
out_channels, |
|
3, |
|
padding=1, |
|
bias=False) |
|
self.add_module(self.norm2_name, norm2) |
|
|
|
self.relu = nn.ReLU(inplace=True) |
|
self.downsample = downsample |
|
|
|
@property |
|
def norm1(self): |
|
"""nn.Module: the normalization layer named "norm1" """ |
|
return getattr(self, self.norm1_name) |
|
|
|
@property |
|
def norm2(self): |
|
"""nn.Module: the normalization layer named "norm2" """ |
|
return getattr(self, self.norm2_name) |
|
|
|
def forward(self, x): |
|
"""Forward function.""" |
|
|
|
def _inner_forward(x): |
|
identity = x |
|
|
|
out = self.conv1(x) |
|
out = self.norm1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.norm2(out) |
|
|
|
if self.downsample is not None: |
|
identity = self.downsample(x) |
|
|
|
out += identity |
|
|
|
return out |
|
|
|
if self.with_cp and x.requires_grad: |
|
out = cp.checkpoint(_inner_forward, x) |
|
else: |
|
out = _inner_forward(x) |
|
|
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class Bottleneck(nn.Module): |
|
"""Bottleneck block for ResNet. |
|
|
|
Args: |
|
in_channels (int): Input channels of this block. |
|
out_channels (int): Output channels of this block. |
|
expansion (int): The ratio of ``out_channels/mid_channels`` where |
|
``mid_channels`` is the input/output channels of conv2. Default: 4. |
|
stride (int): stride of the block. Default: 1 |
|
dilation (int): dilation of convolution. Default: 1 |
|
downsample (nn.Module): downsample operation on identity branch. |
|
Default: None. |
|
style (str): ``"pytorch"`` or ``"caffe"``. If set to "pytorch", the |
|
stride-two layer is the 3x3 conv layer, otherwise the stride-two |
|
layer is the first 1x1 conv layer. Default: "pytorch". |
|
with_cp (bool): Use checkpoint or not. Using checkpoint will save some |
|
memory while slowing down the training speed. |
|
conv_cfg (dict): dictionary to construct and config conv layer. |
|
Default: None |
|
norm_cfg (dict): dictionary to construct and config norm layer. |
|
Default: dict(type='BN') |
|
""" |
|
|
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
expansion=4, |
|
stride=1, |
|
dilation=1, |
|
downsample=None, |
|
style='pytorch', |
|
with_cp=False, |
|
conv_cfg=None, |
|
norm_cfg=dict(type='BN')): |
|
|
|
norm_cfg = copy.deepcopy(norm_cfg) |
|
super().__init__() |
|
assert style in ['pytorch', 'caffe'] |
|
|
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.expansion = expansion |
|
assert out_channels % expansion == 0 |
|
self.mid_channels = out_channels // expansion |
|
self.stride = stride |
|
self.dilation = dilation |
|
self.style = style |
|
self.with_cp = with_cp |
|
self.conv_cfg = conv_cfg |
|
self.norm_cfg = norm_cfg |
|
|
|
if self.style == 'pytorch': |
|
self.conv1_stride = 1 |
|
self.conv2_stride = stride |
|
else: |
|
self.conv1_stride = stride |
|
self.conv2_stride = 1 |
|
|
|
self.norm1_name, norm1 = build_norm_layer( |
|
norm_cfg, self.mid_channels, postfix=1) |
|
self.norm2_name, norm2 = build_norm_layer( |
|
norm_cfg, self.mid_channels, postfix=2) |
|
self.norm3_name, norm3 = build_norm_layer( |
|
norm_cfg, out_channels, postfix=3) |
|
|
|
self.conv1 = build_conv_layer( |
|
conv_cfg, |
|
in_channels, |
|
self.mid_channels, |
|
kernel_size=1, |
|
stride=self.conv1_stride, |
|
bias=False) |
|
self.add_module(self.norm1_name, norm1) |
|
self.conv2 = build_conv_layer( |
|
conv_cfg, |
|
self.mid_channels, |
|
self.mid_channels, |
|
kernel_size=3, |
|
stride=self.conv2_stride, |
|
padding=dilation, |
|
dilation=dilation, |
|
bias=False) |
|
|
|
self.add_module(self.norm2_name, norm2) |
|
self.conv3 = build_conv_layer( |
|
conv_cfg, |
|
self.mid_channels, |
|
out_channels, |
|
kernel_size=1, |
|
bias=False) |
|
self.add_module(self.norm3_name, norm3) |
|
|
|
self.relu = nn.ReLU(inplace=True) |
|
self.downsample = downsample |
|
|
|
@property |
|
def norm1(self): |
|
"""nn.Module: the normalization layer named "norm1" """ |
|
return getattr(self, self.norm1_name) |
|
|
|
@property |
|
def norm2(self): |
|
"""nn.Module: the normalization layer named "norm2" """ |
|
return getattr(self, self.norm2_name) |
|
|
|
@property |
|
def norm3(self): |
|
"""nn.Module: the normalization layer named "norm3" """ |
|
return getattr(self, self.norm3_name) |
|
|
|
def forward(self, x): |
|
"""Forward function.""" |
|
|
|
def _inner_forward(x): |
|
identity = x |
|
|
|
out = self.conv1(x) |
|
out = self.norm1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.norm2(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv3(out) |
|
out = self.norm3(out) |
|
|
|
if self.downsample is not None: |
|
identity = self.downsample(x) |
|
|
|
out += identity |
|
|
|
return out |
|
|
|
if self.with_cp and x.requires_grad: |
|
out = cp.checkpoint(_inner_forward, x) |
|
else: |
|
out = _inner_forward(x) |
|
|
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
def get_expansion(block, expansion=None): |
|
"""Get the expansion of a residual block. |
|
|
|
The block expansion will be obtained by the following order: |
|
|
|
1. If ``expansion`` is given, just return it. |
|
2. If ``block`` has the attribute ``expansion``, then return |
|
``block.expansion``. |
|
3. Return the default value according the the block type: |
|
1 for ``BasicBlock`` and 4 for ``Bottleneck``. |
|
|
|
Args: |
|
block (class): The block class. |
|
expansion (int | None): The given expansion ratio. |
|
|
|
Returns: |
|
int: The expansion of the block. |
|
""" |
|
if isinstance(expansion, int): |
|
assert expansion > 0 |
|
elif expansion is None: |
|
if hasattr(block, 'expansion'): |
|
expansion = block.expansion |
|
elif issubclass(block, BasicBlock): |
|
expansion = 1 |
|
elif issubclass(block, Bottleneck): |
|
expansion = 4 |
|
else: |
|
raise TypeError(f'expansion is not specified for {block.__name__}') |
|
else: |
|
raise TypeError('expansion must be an integer or None') |
|
|
|
return expansion |
|
|
|
|
|
class ResLayer(nn.Sequential): |
|
"""ResLayer to build ResNet style backbone. |
|
|
|
Args: |
|
block (nn.Module): Residual block used to build ResLayer. |
|
num_blocks (int): Number of blocks. |
|
in_channels (int): Input channels of this block. |
|
out_channels (int): Output channels of this block. |
|
expansion (int, optional): The expansion for BasicBlock/Bottleneck. |
|
If not specified, it will firstly be obtained via |
|
``block.expansion``. If the block has no attribute "expansion", |
|
the following default values will be used: 1 for BasicBlock and |
|
4 for Bottleneck. Default: None. |
|
stride (int): stride of the first block. Default: 1. |
|
avg_down (bool): Use AvgPool instead of stride conv when |
|
downsampling in the bottleneck. Default: False |
|
conv_cfg (dict): dictionary to construct and config conv layer. |
|
Default: None |
|
norm_cfg (dict): dictionary to construct and config norm layer. |
|
Default: dict(type='BN') |
|
downsample_first (bool): Downsample at the first block or last block. |
|
False for Hourglass, True for ResNet. Default: True |
|
""" |
|
|
|
def __init__(self, |
|
block, |
|
num_blocks, |
|
in_channels, |
|
out_channels, |
|
expansion=None, |
|
stride=1, |
|
avg_down=False, |
|
conv_cfg=None, |
|
norm_cfg=dict(type='BN'), |
|
downsample_first=True, |
|
**kwargs): |
|
|
|
norm_cfg = copy.deepcopy(norm_cfg) |
|
self.block = block |
|
self.expansion = get_expansion(block, expansion) |
|
|
|
downsample = None |
|
if stride != 1 or in_channels != out_channels: |
|
downsample = [] |
|
conv_stride = stride |
|
if avg_down and stride != 1: |
|
conv_stride = 1 |
|
downsample.append( |
|
nn.AvgPool2d( |
|
kernel_size=stride, |
|
stride=stride, |
|
ceil_mode=True, |
|
count_include_pad=False)) |
|
downsample.extend([ |
|
build_conv_layer( |
|
conv_cfg, |
|
in_channels, |
|
out_channels, |
|
kernel_size=1, |
|
stride=conv_stride, |
|
bias=False), |
|
build_norm_layer(norm_cfg, out_channels)[1] |
|
]) |
|
downsample = nn.Sequential(*downsample) |
|
|
|
layers = [] |
|
if downsample_first: |
|
layers.append( |
|
block( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
expansion=self.expansion, |
|
stride=stride, |
|
downsample=downsample, |
|
conv_cfg=conv_cfg, |
|
norm_cfg=norm_cfg, |
|
**kwargs)) |
|
in_channels = out_channels |
|
for _ in range(1, num_blocks): |
|
layers.append( |
|
block( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
expansion=self.expansion, |
|
stride=1, |
|
conv_cfg=conv_cfg, |
|
norm_cfg=norm_cfg, |
|
**kwargs)) |
|
else: |
|
for i in range(0, num_blocks - 1): |
|
layers.append( |
|
block( |
|
in_channels=in_channels, |
|
out_channels=in_channels, |
|
expansion=self.expansion, |
|
stride=1, |
|
conv_cfg=conv_cfg, |
|
norm_cfg=norm_cfg, |
|
**kwargs)) |
|
layers.append( |
|
block( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
expansion=self.expansion, |
|
stride=stride, |
|
downsample=downsample, |
|
conv_cfg=conv_cfg, |
|
norm_cfg=norm_cfg, |
|
**kwargs)) |
|
|
|
super().__init__(*layers) |
|
|
|
|
|
@BACKBONES.register_module() |
|
class ResNet(BaseBackbone): |
|
"""ResNet backbone. |
|
|
|
Please refer to the `paper <https://arxiv.org/abs/1512.03385>`__ for |
|
details. |
|
|
|
Args: |
|
depth (int): Network depth, from {18, 34, 50, 101, 152}. |
|
in_channels (int): Number of input image channels. Default: 3. |
|
stem_channels (int): Output channels of the stem layer. Default: 64. |
|
base_channels (int): Middle channels of the first stage. Default: 64. |
|
num_stages (int): Stages of the network. Default: 4. |
|
strides (Sequence[int]): Strides of the first block of each stage. |
|
Default: ``(1, 2, 2, 2)``. |
|
dilations (Sequence[int]): Dilation of each stage. |
|
Default: ``(1, 1, 1, 1)``. |
|
out_indices (Sequence[int]): Output from which stages. If only one |
|
stage is specified, a single tensor (feature map) is returned, |
|
otherwise multiple stages are specified, a tuple of tensors will |
|
be returned. Default: ``(3, )``. |
|
style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two |
|
layer is the 3x3 conv layer, otherwise the stride-two layer is |
|
the first 1x1 conv layer. |
|
deep_stem (bool): Replace 7x7 conv in input stem with 3 3x3 conv. |
|
Default: False. |
|
avg_down (bool): Use AvgPool instead of stride conv when |
|
downsampling in the bottleneck. Default: False. |
|
frozen_stages (int): Stages to be frozen (stop grad and set eval mode). |
|
-1 means not freezing any parameters. Default: -1. |
|
conv_cfg (dict | None): The config dict for conv layers. Default: None. |
|
norm_cfg (dict): The config dict for norm layers. |
|
norm_eval (bool): Whether to set norm layers to eval mode, namely, |
|
freeze running stats (mean and var). Note: Effect on Batch Norm |
|
and its variants only. Default: False. |
|
with_cp (bool): Use checkpoint or not. Using checkpoint will save some |
|
memory while slowing down the training speed. Default: False. |
|
zero_init_residual (bool): Whether to use zero init for last norm layer |
|
in resblocks to let them behave as identity. Default: True. |
|
|
|
Example: |
|
>>> from mmpose.models import ResNet |
|
>>> import torch |
|
>>> self = ResNet(depth=18, out_indices=(0, 1, 2, 3)) |
|
>>> self.eval() |
|
>>> inputs = torch.rand(1, 3, 32, 32) |
|
>>> level_outputs = self.forward(inputs) |
|
>>> for level_out in level_outputs: |
|
... print(tuple(level_out.shape)) |
|
(1, 64, 8, 8) |
|
(1, 128, 4, 4) |
|
(1, 256, 2, 2) |
|
(1, 512, 1, 1) |
|
""" |
|
|
|
arch_settings = { |
|
18: (BasicBlock, (2, 2, 2, 2)), |
|
34: (BasicBlock, (3, 4, 6, 3)), |
|
50: (Bottleneck, (3, 4, 6, 3)), |
|
101: (Bottleneck, (3, 4, 23, 3)), |
|
152: (Bottleneck, (3, 8, 36, 3)) |
|
} |
|
|
|
def __init__(self, |
|
depth, |
|
in_channels=3, |
|
stem_channels=64, |
|
base_channels=64, |
|
expansion=None, |
|
num_stages=4, |
|
strides=(1, 2, 2, 2), |
|
dilations=(1, 1, 1, 1), |
|
out_indices=(3, ), |
|
style='pytorch', |
|
deep_stem=False, |
|
avg_down=False, |
|
frozen_stages=-1, |
|
conv_cfg=None, |
|
norm_cfg=dict(type='BN', requires_grad=True), |
|
norm_eval=False, |
|
with_cp=False, |
|
zero_init_residual=True): |
|
|
|
norm_cfg = copy.deepcopy(norm_cfg) |
|
super().__init__() |
|
if depth not in self.arch_settings: |
|
raise KeyError(f'invalid depth {depth} for resnet') |
|
self.depth = depth |
|
self.stem_channels = stem_channels |
|
self.base_channels = base_channels |
|
self.num_stages = num_stages |
|
assert 1 <= num_stages <= 4 |
|
self.strides = strides |
|
self.dilations = dilations |
|
assert len(strides) == len(dilations) == num_stages |
|
self.out_indices = out_indices |
|
assert max(out_indices) < num_stages |
|
self.style = style |
|
self.deep_stem = deep_stem |
|
self.avg_down = avg_down |
|
self.frozen_stages = frozen_stages |
|
self.conv_cfg = conv_cfg |
|
self.norm_cfg = norm_cfg |
|
self.with_cp = with_cp |
|
self.norm_eval = norm_eval |
|
self.zero_init_residual = zero_init_residual |
|
self.block, stage_blocks = self.arch_settings[depth] |
|
self.stage_blocks = stage_blocks[:num_stages] |
|
self.expansion = get_expansion(self.block, expansion) |
|
|
|
self._make_stem_layer(in_channels, stem_channels) |
|
|
|
self.res_layers = [] |
|
_in_channels = stem_channels |
|
_out_channels = base_channels * self.expansion |
|
for i, num_blocks in enumerate(self.stage_blocks): |
|
stride = strides[i] |
|
dilation = dilations[i] |
|
res_layer = self.make_res_layer( |
|
block=self.block, |
|
num_blocks=num_blocks, |
|
in_channels=_in_channels, |
|
out_channels=_out_channels, |
|
expansion=self.expansion, |
|
stride=stride, |
|
dilation=dilation, |
|
style=self.style, |
|
avg_down=self.avg_down, |
|
with_cp=with_cp, |
|
conv_cfg=conv_cfg, |
|
norm_cfg=norm_cfg) |
|
_in_channels = _out_channels |
|
_out_channels *= 2 |
|
layer_name = f'layer{i + 1}' |
|
self.add_module(layer_name, res_layer) |
|
self.res_layers.append(layer_name) |
|
|
|
self._freeze_stages() |
|
|
|
self.feat_dim = res_layer[-1].out_channels |
|
|
|
def make_res_layer(self, **kwargs): |
|
"""Make a ResLayer.""" |
|
return ResLayer(**kwargs) |
|
|
|
@property |
|
def norm1(self): |
|
"""nn.Module: the normalization layer named "norm1" """ |
|
return getattr(self, self.norm1_name) |
|
|
|
def _make_stem_layer(self, in_channels, stem_channels): |
|
"""Make stem layer.""" |
|
if self.deep_stem: |
|
self.stem = nn.Sequential( |
|
ConvModule( |
|
in_channels, |
|
stem_channels // 2, |
|
kernel_size=3, |
|
stride=2, |
|
padding=1, |
|
conv_cfg=self.conv_cfg, |
|
norm_cfg=self.norm_cfg, |
|
inplace=True), |
|
ConvModule( |
|
stem_channels // 2, |
|
stem_channels // 2, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
conv_cfg=self.conv_cfg, |
|
norm_cfg=self.norm_cfg, |
|
inplace=True), |
|
ConvModule( |
|
stem_channels // 2, |
|
stem_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
conv_cfg=self.conv_cfg, |
|
norm_cfg=self.norm_cfg, |
|
inplace=True)) |
|
else: |
|
self.conv1 = build_conv_layer( |
|
self.conv_cfg, |
|
in_channels, |
|
stem_channels, |
|
kernel_size=7, |
|
stride=2, |
|
padding=3, |
|
bias=False) |
|
self.norm1_name, norm1 = build_norm_layer( |
|
self.norm_cfg, stem_channels, postfix=1) |
|
self.add_module(self.norm1_name, norm1) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) |
|
|
|
def _freeze_stages(self): |
|
"""Freeze parameters.""" |
|
if self.frozen_stages >= 0: |
|
if self.deep_stem: |
|
self.stem.eval() |
|
for param in self.stem.parameters(): |
|
param.requires_grad = False |
|
else: |
|
self.norm1.eval() |
|
for m in [self.conv1, self.norm1]: |
|
for param in m.parameters(): |
|
param.requires_grad = False |
|
|
|
for i in range(1, self.frozen_stages + 1): |
|
m = getattr(self, f'layer{i}') |
|
m.eval() |
|
for param in m.parameters(): |
|
param.requires_grad = False |
|
|
|
def init_weights(self, pretrained=None): |
|
"""Initialize the weights in backbone. |
|
|
|
Args: |
|
pretrained (str, optional): Path to pre-trained weights. |
|
Defaults to None. |
|
""" |
|
super().init_weights(pretrained) |
|
if pretrained is None: |
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
kaiming_init(m) |
|
elif isinstance(m, (_BatchNorm, nn.GroupNorm)): |
|
constant_init(m, 1) |
|
|
|
if self.zero_init_residual: |
|
for m in self.modules(): |
|
if isinstance(m, Bottleneck): |
|
constant_init(m.norm3, 0) |
|
elif isinstance(m, BasicBlock): |
|
constant_init(m.norm2, 0) |
|
|
|
def forward(self, x): |
|
"""Forward function.""" |
|
if self.deep_stem: |
|
x = self.stem(x) |
|
else: |
|
x = self.conv1(x) |
|
x = self.norm1(x) |
|
x = self.relu(x) |
|
x = self.maxpool(x) |
|
outs = [] |
|
for i, layer_name in enumerate(self.res_layers): |
|
res_layer = getattr(self, layer_name) |
|
x = res_layer(x) |
|
if i in self.out_indices: |
|
outs.append(x) |
|
if len(outs) == 1: |
|
return outs[0] |
|
return tuple(outs) |
|
|
|
def train(self, mode=True): |
|
"""Convert the model into training mode.""" |
|
super().train(mode) |
|
self._freeze_stages() |
|
if mode and self.norm_eval: |
|
for m in self.modules(): |
|
|
|
if isinstance(m, _BatchNorm): |
|
m.eval() |
|
|
|
|
|
@BACKBONES.register_module() |
|
class ResNetV1d(ResNet): |
|
r"""ResNetV1d variant described in `Bag of Tricks |
|
<https://arxiv.org/pdf/1812.01187.pdf>`__. |
|
|
|
Compared with default ResNet(ResNetV1b), ResNetV1d replaces the 7x7 conv in |
|
the input stem with three 3x3 convs. And in the downsampling block, a 2x2 |
|
avg_pool with stride 2 is added before conv, whose stride is changed to 1. |
|
""" |
|
|
|
def __init__(self, **kwargs): |
|
super().__init__(deep_stem=True, avg_down=True, **kwargs) |
|
|