|
|
|
import copy |
|
|
|
import numpy as np |
|
import torch.nn as nn |
|
from mmcv.cnn import build_conv_layer, build_norm_layer |
|
|
|
from ..builder import BACKBONES |
|
from .resnet import ResNet |
|
from .resnext import Bottleneck |
|
|
|
|
|
@BACKBONES.register_module() |
|
class RegNet(ResNet): |
|
"""RegNet backbone. |
|
|
|
More details can be found in `paper <https://arxiv.org/abs/2003.13678>`__ . |
|
|
|
Args: |
|
arch (dict): The parameter of RegNets. |
|
- w0 (int): initial width |
|
- wa (float): slope of width |
|
- wm (float): quantization parameter to quantize the width |
|
- depth (int): depth of the backbone |
|
- group_w (int): width of group |
|
- bot_mul (float): bottleneck ratio, i.e. expansion of bottleneck. |
|
strides (Sequence[int]): Strides of the first block of each stage. |
|
base_channels (int): Base channels after stem layer. |
|
in_channels (int): Number of input image channels. Default: 3. |
|
dilations (Sequence[int]): Dilation of each stage. |
|
out_indices (Sequence[int]): Output from which stages. |
|
style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two |
|
layer is the 3x3 conv layer, otherwise the stride-two layer is |
|
the first 1x1 conv layer. Default: "pytorch". |
|
frozen_stages (int): Stages to be frozen (all param fixed). -1 means |
|
not freezing any parameters. Default: -1. |
|
norm_cfg (dict): dictionary to construct and config norm layer. |
|
Default: dict(type='BN', requires_grad=True). |
|
norm_eval (bool): Whether to set norm layers to eval mode, namely, |
|
freeze running stats (mean and var). Note: Effect on Batch Norm |
|
and its variants only. Default: False. |
|
with_cp (bool): Use checkpoint or not. Using checkpoint will save some |
|
memory while slowing down the training speed. Default: False. |
|
zero_init_residual (bool): whether to use zero init for last norm layer |
|
in resblocks to let them behave as identity. Default: True. |
|
|
|
Example: |
|
>>> from mmpose.models import RegNet |
|
>>> import torch |
|
>>> self = RegNet( |
|
arch=dict( |
|
w0=88, |
|
wa=26.31, |
|
wm=2.25, |
|
group_w=48, |
|
depth=25, |
|
bot_mul=1.0), |
|
out_indices=(0, 1, 2, 3)) |
|
>>> self.eval() |
|
>>> inputs = torch.rand(1, 3, 32, 32) |
|
>>> level_outputs = self.forward(inputs) |
|
>>> for level_out in level_outputs: |
|
... print(tuple(level_out.shape)) |
|
(1, 96, 8, 8) |
|
(1, 192, 4, 4) |
|
(1, 432, 2, 2) |
|
(1, 1008, 1, 1) |
|
""" |
|
arch_settings = { |
|
'regnetx_400mf': |
|
dict(w0=24, wa=24.48, wm=2.54, group_w=16, depth=22, bot_mul=1.0), |
|
'regnetx_800mf': |
|
dict(w0=56, wa=35.73, wm=2.28, group_w=16, depth=16, bot_mul=1.0), |
|
'regnetx_1.6gf': |
|
dict(w0=80, wa=34.01, wm=2.25, group_w=24, depth=18, bot_mul=1.0), |
|
'regnetx_3.2gf': |
|
dict(w0=88, wa=26.31, wm=2.25, group_w=48, depth=25, bot_mul=1.0), |
|
'regnetx_4.0gf': |
|
dict(w0=96, wa=38.65, wm=2.43, group_w=40, depth=23, bot_mul=1.0), |
|
'regnetx_6.4gf': |
|
dict(w0=184, wa=60.83, wm=2.07, group_w=56, depth=17, bot_mul=1.0), |
|
'regnetx_8.0gf': |
|
dict(w0=80, wa=49.56, wm=2.88, group_w=120, depth=23, bot_mul=1.0), |
|
'regnetx_12gf': |
|
dict(w0=168, wa=73.36, wm=2.37, group_w=112, depth=19, bot_mul=1.0), |
|
} |
|
|
|
def __init__(self, |
|
arch, |
|
in_channels=3, |
|
stem_channels=32, |
|
base_channels=32, |
|
strides=(2, 2, 2, 2), |
|
dilations=(1, 1, 1, 1), |
|
out_indices=(3, ), |
|
style='pytorch', |
|
deep_stem=False, |
|
avg_down=False, |
|
frozen_stages=-1, |
|
conv_cfg=None, |
|
norm_cfg=dict(type='BN', requires_grad=True), |
|
norm_eval=False, |
|
with_cp=False, |
|
zero_init_residual=True): |
|
|
|
norm_cfg = copy.deepcopy(norm_cfg) |
|
super(ResNet, self).__init__() |
|
|
|
|
|
if isinstance(arch, str): |
|
assert arch in self.arch_settings, \ |
|
f'"arch": "{arch}" is not one of the' \ |
|
' arch_settings' |
|
arch = self.arch_settings[arch] |
|
elif not isinstance(arch, dict): |
|
raise TypeError('Expect "arch" to be either a string ' |
|
f'or a dict, got {type(arch)}') |
|
|
|
widths, num_stages = self.generate_regnet( |
|
arch['w0'], |
|
arch['wa'], |
|
arch['wm'], |
|
arch['depth'], |
|
) |
|
|
|
stage_widths, stage_blocks = self.get_stages_from_blocks(widths) |
|
|
|
group_widths = [arch['group_w'] for _ in range(num_stages)] |
|
self.bottleneck_ratio = [arch['bot_mul'] for _ in range(num_stages)] |
|
|
|
stage_widths, group_widths = self.adjust_width_group( |
|
stage_widths, self.bottleneck_ratio, group_widths) |
|
|
|
|
|
self.stage_widths = stage_widths |
|
self.group_widths = group_widths |
|
self.depth = sum(stage_blocks) |
|
self.stem_channels = stem_channels |
|
self.base_channels = base_channels |
|
self.num_stages = num_stages |
|
assert 1 <= num_stages <= 4 |
|
self.strides = strides |
|
self.dilations = dilations |
|
assert len(strides) == len(dilations) == num_stages |
|
self.out_indices = out_indices |
|
assert max(out_indices) < num_stages |
|
self.style = style |
|
self.deep_stem = deep_stem |
|
if self.deep_stem: |
|
raise NotImplementedError( |
|
'deep_stem has not been implemented for RegNet') |
|
self.avg_down = avg_down |
|
self.frozen_stages = frozen_stages |
|
self.conv_cfg = conv_cfg |
|
self.norm_cfg = norm_cfg |
|
self.with_cp = with_cp |
|
self.norm_eval = norm_eval |
|
self.zero_init_residual = zero_init_residual |
|
self.stage_blocks = stage_blocks[:num_stages] |
|
|
|
self._make_stem_layer(in_channels, stem_channels) |
|
|
|
_in_channels = stem_channels |
|
self.res_layers = [] |
|
for i, num_blocks in enumerate(self.stage_blocks): |
|
stride = self.strides[i] |
|
dilation = self.dilations[i] |
|
group_width = self.group_widths[i] |
|
width = int(round(self.stage_widths[i] * self.bottleneck_ratio[i])) |
|
stage_groups = width // group_width |
|
|
|
res_layer = self.make_res_layer( |
|
block=Bottleneck, |
|
num_blocks=num_blocks, |
|
in_channels=_in_channels, |
|
out_channels=self.stage_widths[i], |
|
expansion=1, |
|
stride=stride, |
|
dilation=dilation, |
|
style=self.style, |
|
avg_down=self.avg_down, |
|
with_cp=self.with_cp, |
|
conv_cfg=self.conv_cfg, |
|
norm_cfg=self.norm_cfg, |
|
base_channels=self.stage_widths[i], |
|
groups=stage_groups, |
|
width_per_group=group_width) |
|
_in_channels = self.stage_widths[i] |
|
layer_name = f'layer{i + 1}' |
|
self.add_module(layer_name, res_layer) |
|
self.res_layers.append(layer_name) |
|
|
|
self._freeze_stages() |
|
|
|
self.feat_dim = stage_widths[-1] |
|
|
|
def _make_stem_layer(self, in_channels, base_channels): |
|
self.conv1 = build_conv_layer( |
|
self.conv_cfg, |
|
in_channels, |
|
base_channels, |
|
kernel_size=3, |
|
stride=2, |
|
padding=1, |
|
bias=False) |
|
self.norm1_name, norm1 = build_norm_layer( |
|
self.norm_cfg, base_channels, postfix=1) |
|
self.add_module(self.norm1_name, norm1) |
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
@staticmethod |
|
def generate_regnet(initial_width, |
|
width_slope, |
|
width_parameter, |
|
depth, |
|
divisor=8): |
|
"""Generates per block width from RegNet parameters. |
|
|
|
Args: |
|
initial_width ([int]): Initial width of the backbone |
|
width_slope ([float]): Slope of the quantized linear function |
|
width_parameter ([int]): Parameter used to quantize the width. |
|
depth ([int]): Depth of the backbone. |
|
divisor (int, optional): The divisor of channels. Defaults to 8. |
|
|
|
Returns: |
|
list, int: return a list of widths of each stage and the number of |
|
stages |
|
""" |
|
assert width_slope >= 0 |
|
assert initial_width > 0 |
|
assert width_parameter > 1 |
|
assert initial_width % divisor == 0 |
|
widths_cont = np.arange(depth) * width_slope + initial_width |
|
ks = np.round( |
|
np.log(widths_cont / initial_width) / np.log(width_parameter)) |
|
widths = initial_width * np.power(width_parameter, ks) |
|
widths = np.round(np.divide(widths, divisor)) * divisor |
|
num_stages = len(np.unique(widths)) |
|
widths, widths_cont = widths.astype(int).tolist(), widths_cont.tolist() |
|
return widths, num_stages |
|
|
|
@staticmethod |
|
def quantize_float(number, divisor): |
|
"""Converts a float to closest non-zero int divisible by divior. |
|
|
|
Args: |
|
number (int): Original number to be quantized. |
|
divisor (int): Divisor used to quantize the number. |
|
|
|
Returns: |
|
int: quantized number that is divisible by devisor. |
|
""" |
|
return int(round(number / divisor) * divisor) |
|
|
|
def adjust_width_group(self, widths, bottleneck_ratio, groups): |
|
"""Adjusts the compatibility of widths and groups. |
|
|
|
Args: |
|
widths (list[int]): Width of each stage. |
|
bottleneck_ratio (float): Bottleneck ratio. |
|
groups (int): number of groups in each stage |
|
|
|
Returns: |
|
tuple(list): The adjusted widths and groups of each stage. |
|
""" |
|
bottleneck_width = [ |
|
int(w * b) for w, b in zip(widths, bottleneck_ratio) |
|
] |
|
groups = [min(g, w_bot) for g, w_bot in zip(groups, bottleneck_width)] |
|
bottleneck_width = [ |
|
self.quantize_float(w_bot, g) |
|
for w_bot, g in zip(bottleneck_width, groups) |
|
] |
|
widths = [ |
|
int(w_bot / b) |
|
for w_bot, b in zip(bottleneck_width, bottleneck_ratio) |
|
] |
|
return widths, groups |
|
|
|
def get_stages_from_blocks(self, widths): |
|
"""Gets widths/stage_blocks of network at each stage. |
|
|
|
Args: |
|
widths (list[int]): Width in each stage. |
|
|
|
Returns: |
|
tuple(list): width and depth of each stage |
|
""" |
|
width_diff = [ |
|
width != width_prev |
|
for width, width_prev in zip(widths + [0], [0] + widths) |
|
] |
|
stage_widths = [ |
|
width for width, diff in zip(widths, width_diff[:-1]) if diff |
|
] |
|
stage_blocks = np.diff([ |
|
depth for depth, diff in zip(range(len(width_diff)), width_diff) |
|
if diff |
|
]).tolist() |
|
return stage_widths, stage_blocks |
|
|
|
def forward(self, x): |
|
x = self.conv1(x) |
|
x = self.norm1(x) |
|
x = self.relu(x) |
|
|
|
outs = [] |
|
for i, layer_name in enumerate(self.res_layers): |
|
res_layer = getattr(self, layer_name) |
|
x = res_layer(x) |
|
if i in self.out_indices: |
|
outs.append(x) |
|
|
|
if len(outs) == 1: |
|
return outs[0] |
|
return tuple(outs) |
|
|