|
|
|
import copy |
|
import logging |
|
|
|
import torch.nn as nn |
|
import torch.utils.checkpoint as cp |
|
from mmcv.cnn import ConvModule, constant_init, kaiming_init |
|
from torch.nn.modules.batchnorm import _BatchNorm |
|
|
|
from ..builder import BACKBONES |
|
from .base_backbone import BaseBackbone |
|
from .utils import load_checkpoint, make_divisible |
|
|
|
|
|
class InvertedResidual(nn.Module): |
|
"""InvertedResidual block for MobileNetV2. |
|
|
|
Args: |
|
in_channels (int): The input channels of the InvertedResidual block. |
|
out_channels (int): The output channels of the InvertedResidual block. |
|
stride (int): Stride of the middle (first) 3x3 convolution. |
|
expand_ratio (int): adjusts number of channels of the hidden layer |
|
in InvertedResidual by this amount. |
|
conv_cfg (dict): Config dict for convolution layer. |
|
Default: None, which means using conv2d. |
|
norm_cfg (dict): Config dict for normalization layer. |
|
Default: dict(type='BN'). |
|
act_cfg (dict): Config dict for activation layer. |
|
Default: dict(type='ReLU6'). |
|
with_cp (bool): Use checkpoint or not. Using checkpoint will save some |
|
memory while slowing down the training speed. Default: False. |
|
""" |
|
|
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
stride, |
|
expand_ratio, |
|
conv_cfg=None, |
|
norm_cfg=dict(type='BN'), |
|
act_cfg=dict(type='ReLU6'), |
|
with_cp=False): |
|
|
|
norm_cfg = copy.deepcopy(norm_cfg) |
|
act_cfg = copy.deepcopy(act_cfg) |
|
super().__init__() |
|
self.stride = stride |
|
assert stride in [1, 2], f'stride must in [1, 2]. ' \ |
|
f'But received {stride}.' |
|
self.with_cp = with_cp |
|
self.use_res_connect = self.stride == 1 and in_channels == out_channels |
|
hidden_dim = int(round(in_channels * expand_ratio)) |
|
|
|
layers = [] |
|
if expand_ratio != 1: |
|
layers.append( |
|
ConvModule( |
|
in_channels=in_channels, |
|
out_channels=hidden_dim, |
|
kernel_size=1, |
|
conv_cfg=conv_cfg, |
|
norm_cfg=norm_cfg, |
|
act_cfg=act_cfg)) |
|
layers.extend([ |
|
ConvModule( |
|
in_channels=hidden_dim, |
|
out_channels=hidden_dim, |
|
kernel_size=3, |
|
stride=stride, |
|
padding=1, |
|
groups=hidden_dim, |
|
conv_cfg=conv_cfg, |
|
norm_cfg=norm_cfg, |
|
act_cfg=act_cfg), |
|
ConvModule( |
|
in_channels=hidden_dim, |
|
out_channels=out_channels, |
|
kernel_size=1, |
|
conv_cfg=conv_cfg, |
|
norm_cfg=norm_cfg, |
|
act_cfg=None) |
|
]) |
|
self.conv = nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
|
|
def _inner_forward(x): |
|
if self.use_res_connect: |
|
return x + self.conv(x) |
|
return self.conv(x) |
|
|
|
if self.with_cp and x.requires_grad: |
|
out = cp.checkpoint(_inner_forward, x) |
|
else: |
|
out = _inner_forward(x) |
|
|
|
return out |
|
|
|
|
|
@BACKBONES.register_module() |
|
class MobileNetV2(BaseBackbone): |
|
"""MobileNetV2 backbone. |
|
|
|
Args: |
|
widen_factor (float): Width multiplier, multiply number of |
|
channels in each layer by this amount. Default: 1.0. |
|
out_indices (None or Sequence[int]): Output from which stages. |
|
Default: (7, ). |
|
frozen_stages (int): Stages to be frozen (all param fixed). |
|
Default: -1, which means not freezing any parameters. |
|
conv_cfg (dict): Config dict for convolution layer. |
|
Default: None, which means using conv2d. |
|
norm_cfg (dict): Config dict for normalization layer. |
|
Default: dict(type='BN'). |
|
act_cfg (dict): Config dict for activation layer. |
|
Default: dict(type='ReLU6'). |
|
norm_eval (bool): Whether to set norm layers to eval mode, namely, |
|
freeze running stats (mean and var). Note: Effect on Batch Norm |
|
and its variants only. Default: False. |
|
with_cp (bool): Use checkpoint or not. Using checkpoint will save some |
|
memory while slowing down the training speed. Default: False. |
|
""" |
|
|
|
|
|
|
|
arch_settings = [[1, 16, 1, 1], [6, 24, 2, 2], [6, 32, 3, 2], |
|
[6, 64, 4, 2], [6, 96, 3, 1], [6, 160, 3, 2], |
|
[6, 320, 1, 1]] |
|
|
|
def __init__(self, |
|
widen_factor=1., |
|
out_indices=(7, ), |
|
frozen_stages=-1, |
|
conv_cfg=None, |
|
norm_cfg=dict(type='BN'), |
|
act_cfg=dict(type='ReLU6'), |
|
norm_eval=False, |
|
with_cp=False): |
|
|
|
norm_cfg = copy.deepcopy(norm_cfg) |
|
act_cfg = copy.deepcopy(act_cfg) |
|
super().__init__() |
|
self.widen_factor = widen_factor |
|
self.out_indices = out_indices |
|
for index in out_indices: |
|
if index not in range(0, 8): |
|
raise ValueError('the item in out_indices must in ' |
|
f'range(0, 8). But received {index}') |
|
|
|
if frozen_stages not in range(-1, 8): |
|
raise ValueError('frozen_stages must be in range(-1, 8). ' |
|
f'But received {frozen_stages}') |
|
self.out_indices = out_indices |
|
self.frozen_stages = frozen_stages |
|
self.conv_cfg = conv_cfg |
|
self.norm_cfg = norm_cfg |
|
self.act_cfg = act_cfg |
|
self.norm_eval = norm_eval |
|
self.with_cp = with_cp |
|
|
|
self.in_channels = make_divisible(32 * widen_factor, 8) |
|
|
|
self.conv1 = ConvModule( |
|
in_channels=3, |
|
out_channels=self.in_channels, |
|
kernel_size=3, |
|
stride=2, |
|
padding=1, |
|
conv_cfg=self.conv_cfg, |
|
norm_cfg=self.norm_cfg, |
|
act_cfg=self.act_cfg) |
|
|
|
self.layers = [] |
|
|
|
for i, layer_cfg in enumerate(self.arch_settings): |
|
expand_ratio, channel, num_blocks, stride = layer_cfg |
|
out_channels = make_divisible(channel * widen_factor, 8) |
|
inverted_res_layer = self.make_layer( |
|
out_channels=out_channels, |
|
num_blocks=num_blocks, |
|
stride=stride, |
|
expand_ratio=expand_ratio) |
|
layer_name = f'layer{i + 1}' |
|
self.add_module(layer_name, inverted_res_layer) |
|
self.layers.append(layer_name) |
|
|
|
if widen_factor > 1.0: |
|
self.out_channel = int(1280 * widen_factor) |
|
else: |
|
self.out_channel = 1280 |
|
|
|
layer = ConvModule( |
|
in_channels=self.in_channels, |
|
out_channels=self.out_channel, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
conv_cfg=self.conv_cfg, |
|
norm_cfg=self.norm_cfg, |
|
act_cfg=self.act_cfg) |
|
self.add_module('conv2', layer) |
|
self.layers.append('conv2') |
|
|
|
def make_layer(self, out_channels, num_blocks, stride, expand_ratio): |
|
"""Stack InvertedResidual blocks to build a layer for MobileNetV2. |
|
|
|
Args: |
|
out_channels (int): out_channels of block. |
|
num_blocks (int): number of blocks. |
|
stride (int): stride of the first block. Default: 1 |
|
expand_ratio (int): Expand the number of channels of the |
|
hidden layer in InvertedResidual by this ratio. Default: 6. |
|
""" |
|
layers = [] |
|
for i in range(num_blocks): |
|
if i >= 1: |
|
stride = 1 |
|
layers.append( |
|
InvertedResidual( |
|
self.in_channels, |
|
out_channels, |
|
stride, |
|
expand_ratio=expand_ratio, |
|
conv_cfg=self.conv_cfg, |
|
norm_cfg=self.norm_cfg, |
|
act_cfg=self.act_cfg, |
|
with_cp=self.with_cp)) |
|
self.in_channels = out_channels |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def init_weights(self, pretrained=None): |
|
if isinstance(pretrained, str): |
|
logger = logging.getLogger() |
|
load_checkpoint(self, pretrained, strict=False, logger=logger) |
|
elif pretrained is None: |
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
kaiming_init(m) |
|
elif isinstance(m, (_BatchNorm, nn.GroupNorm)): |
|
constant_init(m, 1) |
|
else: |
|
raise TypeError('pretrained must be a str or None') |
|
|
|
def forward(self, x): |
|
x = self.conv1(x) |
|
|
|
outs = [] |
|
for i, layer_name in enumerate(self.layers): |
|
layer = getattr(self, layer_name) |
|
x = layer(x) |
|
if i in self.out_indices: |
|
outs.append(x) |
|
|
|
if len(outs) == 1: |
|
return outs[0] |
|
return tuple(outs) |
|
|
|
def _freeze_stages(self): |
|
if self.frozen_stages >= 0: |
|
for param in self.conv1.parameters(): |
|
param.requires_grad = False |
|
for i in range(1, self.frozen_stages + 1): |
|
layer = getattr(self, f'layer{i}') |
|
layer.eval() |
|
for param in layer.parameters(): |
|
param.requires_grad = False |
|
|
|
def train(self, mode=True): |
|
super().train(mode) |
|
self._freeze_stages() |
|
if mode and self.norm_eval: |
|
for m in self.modules(): |
|
if isinstance(m, _BatchNorm): |
|
m.eval() |
|
|