|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import pdb |
|
import torch |
|
import torch.nn as nn |
|
from mmcv.cnn import ( |
|
build_conv_layer, |
|
build_norm_layer, |
|
constant_init, |
|
kaiming_init, |
|
normal_init, |
|
) |
|
|
|
from .hrt_checkpoint import load_checkpoint |
|
from mmcv.runner.checkpoint import load_state_dict |
|
from mmcv.utils.parrots_wrapper import _BatchNorm |
|
|
|
from mmpose.models.utils.ops import resize |
|
from mmpose.utils import get_root_logger |
|
from ..builder import BACKBONES |
|
from .modules.bottleneck_block import Bottleneck |
|
from .modules.transformer_block import GeneralTransformerBlock |
|
|
|
|
|
class HighResolutionTransformerModule(nn.Module): |
|
def __init__( |
|
self, |
|
num_branches, |
|
blocks, |
|
num_blocks, |
|
in_channels, |
|
num_channels, |
|
multiscale_output, |
|
with_cp=False, |
|
conv_cfg=None, |
|
norm_cfg=dict(type="BN", requires_grad=True), |
|
num_heads=None, |
|
num_window_sizes=None, |
|
num_mlp_ratios=None, |
|
drop_paths=0.0, |
|
): |
|
super(HighResolutionTransformerModule, self).__init__() |
|
self._check_branches(num_branches, num_blocks, in_channels, num_channels) |
|
|
|
self.in_channels = in_channels |
|
self.num_branches = num_branches |
|
|
|
self.multiscale_output = multiscale_output |
|
self.norm_cfg = norm_cfg |
|
self.conv_cfg = conv_cfg |
|
self.with_cp = with_cp |
|
self.branches = self._make_branches( |
|
num_branches, |
|
blocks, |
|
num_blocks, |
|
num_channels, |
|
num_heads, |
|
num_window_sizes, |
|
num_mlp_ratios, |
|
drop_paths, |
|
) |
|
self.fuse_layers = self._make_fuse_layers() |
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
|
|
self.num_heads = num_heads |
|
self.num_window_sizes = num_window_sizes |
|
self.num_mlp_ratios = num_mlp_ratios |
|
|
|
def _check_branches(self, num_branches, num_blocks, in_channels, num_channels): |
|
logger = get_root_logger() |
|
if num_branches != len(num_blocks): |
|
error_msg = "NUM_BRANCHES({}) <> NUM_BLOCKS({})".format( |
|
num_branches, len(num_blocks) |
|
) |
|
logger.error(error_msg) |
|
raise ValueError(error_msg) |
|
|
|
if num_branches != len(num_channels): |
|
error_msg = "NUM_BRANCHES({}) <> NUM_CHANNELS({})".format( |
|
num_branches, len(num_channels) |
|
) |
|
logger.error(error_msg) |
|
raise ValueError(error_msg) |
|
|
|
if num_branches != len(in_channels): |
|
error_msg = "NUM_BRANCHES({}) <> IN_CHANNELS({})".format( |
|
num_branches, len(in_channels) |
|
) |
|
logger.error(error_msg) |
|
raise ValueError(error_msg) |
|
|
|
def _make_one_branch( |
|
self, |
|
branch_index, |
|
block, |
|
num_blocks, |
|
num_channels, |
|
num_heads, |
|
num_window_sizes, |
|
num_mlp_ratios, |
|
drop_paths, |
|
stride=1, |
|
): |
|
"""Make one branch.""" |
|
downsample = None |
|
if ( |
|
stride != 1 |
|
or self.in_channels[branch_index] |
|
!= num_channels[branch_index] * block.expansion |
|
): |
|
downsample = nn.Sequential( |
|
build_conv_layer( |
|
self.conv_cfg, |
|
self.in_channels[branch_index], |
|
num_channels[branch_index] * block.expansion, |
|
kernel_size=1, |
|
stride=stride, |
|
bias=False, |
|
), |
|
build_norm_layer( |
|
self.norm_cfg, num_channels[branch_index] * block.expansion |
|
)[1], |
|
) |
|
|
|
layers = [] |
|
|
|
layers.append( |
|
block( |
|
self.in_channels[branch_index], |
|
num_channels[branch_index], |
|
num_heads=num_heads[branch_index], |
|
window_size=num_window_sizes[branch_index], |
|
mlp_ratio=num_mlp_ratios[branch_index], |
|
drop_path=drop_paths[0], |
|
norm_cfg=self.norm_cfg, |
|
conv_cfg=self.conv_cfg, |
|
) |
|
) |
|
self.in_channels[branch_index] = num_channels[branch_index] * block.expansion |
|
for i in range(1, num_blocks[branch_index]): |
|
layers.append( |
|
block( |
|
self.in_channels[branch_index], |
|
num_channels[branch_index], |
|
num_heads=num_heads[branch_index], |
|
window_size=num_window_sizes[branch_index], |
|
mlp_ratio=num_mlp_ratios[branch_index], |
|
drop_path=drop_paths[i], |
|
norm_cfg=self.norm_cfg, |
|
conv_cfg=self.conv_cfg, |
|
) |
|
) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def _make_branches( |
|
self, |
|
num_branches, |
|
block, |
|
num_blocks, |
|
num_channels, |
|
num_heads, |
|
num_window_sizes, |
|
num_mlp_ratios, |
|
drop_paths, |
|
): |
|
"""Make branches.""" |
|
branches = [] |
|
|
|
for i in range(num_branches): |
|
branches.append( |
|
self._make_one_branch( |
|
i, |
|
block, |
|
num_blocks, |
|
num_channels, |
|
num_heads, |
|
num_window_sizes, |
|
num_mlp_ratios, |
|
drop_paths, |
|
) |
|
) |
|
|
|
return nn.ModuleList(branches) |
|
|
|
def _make_fuse_layers(self): |
|
"""Build fuse layer.""" |
|
if self.num_branches == 1: |
|
return None |
|
|
|
num_branches = self.num_branches |
|
in_channels = self.in_channels |
|
fuse_layers = [] |
|
num_out_branches = num_branches if self.multiscale_output else 1 |
|
for i in range(num_out_branches): |
|
fuse_layer = [] |
|
for j in range(num_branches): |
|
if j > i: |
|
fuse_layer.append( |
|
nn.Sequential( |
|
build_conv_layer( |
|
self.conv_cfg, |
|
in_channels[j], |
|
in_channels[i], |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
bias=False, |
|
), |
|
build_norm_layer(self.norm_cfg, in_channels[i])[1], |
|
nn.Upsample( |
|
scale_factor=2 ** (j - i), |
|
mode="bilinear", |
|
align_corners=False, |
|
), |
|
) |
|
) |
|
elif j == i: |
|
fuse_layer.append(None) |
|
else: |
|
conv_downsamples = [] |
|
for k in range(i - j): |
|
if k == i - j - 1: |
|
conv_downsamples.append( |
|
nn.Sequential( |
|
build_conv_layer( |
|
self.conv_cfg, |
|
in_channels[j], |
|
in_channels[j], |
|
kernel_size=3, |
|
stride=2, |
|
padding=1, |
|
groups=in_channels[j], |
|
bias=False, |
|
), |
|
build_norm_layer(self.norm_cfg, in_channels[j])[1], |
|
build_conv_layer( |
|
self.conv_cfg, |
|
in_channels[j], |
|
in_channels[i], |
|
kernel_size=1, |
|
stride=1, |
|
bias=False, |
|
), |
|
build_norm_layer(self.norm_cfg, in_channels[i])[1], |
|
) |
|
) |
|
else: |
|
conv_downsamples.append( |
|
nn.Sequential( |
|
build_conv_layer( |
|
self.conv_cfg, |
|
in_channels[j], |
|
in_channels[j], |
|
kernel_size=3, |
|
stride=2, |
|
padding=1, |
|
groups=in_channels[j], |
|
bias=False, |
|
), |
|
build_norm_layer(self.norm_cfg, in_channels[j])[1], |
|
build_conv_layer( |
|
self.conv_cfg, |
|
in_channels[j], |
|
in_channels[j], |
|
kernel_size=1, |
|
stride=1, |
|
bias=False, |
|
), |
|
build_norm_layer(self.norm_cfg, in_channels[j])[1], |
|
nn.ReLU(inplace=True), |
|
) |
|
) |
|
fuse_layer.append(nn.Sequential(*conv_downsamples)) |
|
fuse_layers.append(nn.ModuleList(fuse_layer)) |
|
return nn.ModuleList(fuse_layers) |
|
|
|
def forward(self, x): |
|
"""Forward function.""" |
|
if self.num_branches == 1: |
|
return [self.branches[0](x[0])] |
|
|
|
for i in range(self.num_branches): |
|
x[i] = self.branches[i](x[i]) |
|
|
|
x_fuse = [] |
|
for i in range(len(self.fuse_layers)): |
|
y = x[0] if i == 0 else self.fuse_layers[i][0](x[0]) |
|
for j in range(1, self.num_branches): |
|
if i == j: |
|
y += x[j] |
|
elif j > i: |
|
y = y + resize( |
|
self.fuse_layers[i][j](x[j]), |
|
size=x[i].shape[2:], |
|
mode="bilinear", |
|
align_corners=False, |
|
) |
|
else: |
|
y += self.fuse_layers[i][j](x[j]) |
|
x_fuse.append(self.relu(y)) |
|
return x_fuse |
|
|
|
|
|
@BACKBONES.register_module() |
|
class HRT(nn.Module): |
|
"""HRT backbone. |
|
High Resolution Transformer Backbone |
|
""" |
|
|
|
blocks_dict = { |
|
"BOTTLENECK": Bottleneck, |
|
"TRANSFORMER_BLOCK": GeneralTransformerBlock, |
|
} |
|
|
|
def __init__( |
|
self, |
|
extra, |
|
in_channels=3, |
|
conv_cfg=None, |
|
norm_cfg=dict(type="BN", requires_grad=True), |
|
norm_eval=False, |
|
with_cp=False, |
|
zero_init_residual=False, |
|
): |
|
super(HRT, self).__init__() |
|
self.extra = extra |
|
self.conv_cfg = conv_cfg |
|
self.norm_cfg = norm_cfg |
|
self.norm_eval = norm_eval |
|
self.with_cp = with_cp |
|
self.zero_init_residual = zero_init_residual |
|
|
|
|
|
self.norm1_name, norm1 = build_norm_layer(self.norm_cfg, 64, postfix=1) |
|
self.norm2_name, norm2 = build_norm_layer(self.norm_cfg, 64, postfix=2) |
|
|
|
self.conv1 = build_conv_layer( |
|
self.conv_cfg, |
|
in_channels, |
|
64, |
|
kernel_size=3, |
|
stride=2, |
|
padding=1, |
|
bias=False, |
|
) |
|
self.add_module(self.norm1_name, norm1) |
|
|
|
self.conv2 = build_conv_layer( |
|
self.conv_cfg, 64, 64, kernel_size=3, stride=2, padding=1, bias=False |
|
) |
|
self.add_module(self.norm2_name, norm2) |
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
|
|
depth_s2 = ( |
|
self.extra["stage2"]["num_blocks"][0] * self.extra["stage2"]["num_modules"] |
|
) |
|
depth_s3 = ( |
|
self.extra["stage3"]["num_blocks"][0] * self.extra["stage3"]["num_modules"] |
|
) |
|
depth_s4 = ( |
|
self.extra["stage4"]["num_blocks"][0] * self.extra["stage4"]["num_modules"] |
|
) |
|
depths = [depth_s2, depth_s3, depth_s4] |
|
drop_path_rate = self.extra["drop_path_rate"] |
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] |
|
|
|
logger = get_root_logger() |
|
logger.info(dpr) |
|
|
|
|
|
self.stage1_cfg = self.extra["stage1"] |
|
num_channels = self.stage1_cfg["num_channels"][0] |
|
block_type = self.stage1_cfg["block"] |
|
num_blocks = self.stage1_cfg["num_blocks"][0] |
|
|
|
block = self.blocks_dict[block_type] |
|
stage1_out_channels = num_channels * block.expansion |
|
self.layer1 = self._make_layer(block, 64, num_channels, num_blocks) |
|
|
|
|
|
self.stage2_cfg = self.extra["stage2"] |
|
num_channels = self.stage2_cfg["num_channels"] |
|
block_type = self.stage2_cfg["block"] |
|
|
|
block = self.blocks_dict[block_type] |
|
num_channels = [channel * block.expansion for channel in num_channels] |
|
self.transition1 = self._make_transition_layer( |
|
[stage1_out_channels], num_channels |
|
) |
|
self.stage2, pre_stage_channels = self._make_stage( |
|
self.stage2_cfg, num_channels, drop_paths=dpr[0:depth_s2] |
|
) |
|
|
|
|
|
self.stage3_cfg = self.extra["stage3"] |
|
num_channels = self.stage3_cfg["num_channels"] |
|
block_type = self.stage3_cfg["block"] |
|
|
|
block = self.blocks_dict[block_type] |
|
num_channels = [channel * block.expansion for channel in num_channels] |
|
self.transition2 = self._make_transition_layer(pre_stage_channels, num_channels) |
|
self.stage3, pre_stage_channels = self._make_stage( |
|
self.stage3_cfg, |
|
num_channels, |
|
drop_paths=dpr[depth_s2 : depth_s2 + depth_s3], |
|
) |
|
|
|
|
|
self.stage4_cfg = self.extra["stage4"] |
|
num_channels = self.stage4_cfg["num_channels"] |
|
block_type = self.stage4_cfg["block"] |
|
|
|
block = self.blocks_dict[block_type] |
|
num_channels = [channel * block.expansion for channel in num_channels] |
|
self.transition3 = self._make_transition_layer(pre_stage_channels, num_channels) |
|
self.stage4, pre_stage_channels = self._make_stage( |
|
self.stage4_cfg, |
|
num_channels, |
|
multiscale_output=self.stage4_cfg.get("multiscale_output", True), |
|
drop_paths=dpr[depth_s2 + depth_s3 :], |
|
) |
|
|
|
@property |
|
def norm1(self): |
|
"""nn.Module: the normalization layer named "norm1" """ |
|
return getattr(self, self.norm1_name) |
|
|
|
@property |
|
def norm2(self): |
|
"""nn.Module: the normalization layer named "norm2" """ |
|
return getattr(self, self.norm2_name) |
|
|
|
def _make_transition_layer(self, num_channels_pre_layer, num_channels_cur_layer): |
|
"""Make transition layer.""" |
|
num_branches_cur = len(num_channels_cur_layer) |
|
num_branches_pre = len(num_channels_pre_layer) |
|
|
|
transition_layers = [] |
|
for i in range(num_branches_cur): |
|
if i < num_branches_pre: |
|
if num_channels_cur_layer[i] != num_channels_pre_layer[i]: |
|
transition_layers.append( |
|
nn.Sequential( |
|
build_conv_layer( |
|
self.conv_cfg, |
|
num_channels_pre_layer[i], |
|
num_channels_cur_layer[i], |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
bias=False, |
|
), |
|
build_norm_layer(self.norm_cfg, num_channels_cur_layer[i])[ |
|
1 |
|
], |
|
nn.ReLU(inplace=True), |
|
) |
|
) |
|
else: |
|
transition_layers.append(None) |
|
else: |
|
conv_downsamples = [] |
|
for j in range(i + 1 - num_branches_pre): |
|
in_channels = num_channels_pre_layer[-1] |
|
out_channels = ( |
|
num_channels_cur_layer[i] |
|
if j == i - num_branches_pre |
|
else in_channels |
|
) |
|
conv_downsamples.append( |
|
nn.Sequential( |
|
build_conv_layer( |
|
self.conv_cfg, |
|
in_channels, |
|
out_channels, |
|
kernel_size=3, |
|
stride=2, |
|
padding=1, |
|
bias=False, |
|
), |
|
build_norm_layer(self.norm_cfg, out_channels)[1], |
|
nn.ReLU(inplace=True), |
|
) |
|
) |
|
transition_layers.append(nn.Sequential(*conv_downsamples)) |
|
|
|
return nn.ModuleList(transition_layers) |
|
|
|
def _make_layer( |
|
self, |
|
block, |
|
inplanes, |
|
planes, |
|
blocks, |
|
stride=1, |
|
num_heads=1, |
|
window_size=7, |
|
mlp_ratio=4.0, |
|
): |
|
"""Make each layer.""" |
|
downsample = None |
|
if stride != 1 or inplanes != planes * block.expansion: |
|
downsample = nn.Sequential( |
|
build_conv_layer( |
|
self.conv_cfg, |
|
inplanes, |
|
planes * block.expansion, |
|
kernel_size=1, |
|
stride=stride, |
|
bias=False, |
|
), |
|
build_norm_layer(self.norm_cfg, planes * block.expansion)[1], |
|
) |
|
|
|
layers = [] |
|
if isinstance(block, GeneralTransformerBlock): |
|
layers.append( |
|
block( |
|
inplanes, |
|
planes, |
|
num_heads=num_heads, |
|
window_size=window_size, |
|
mlp_ratio=mlp_ratio, |
|
norm_cfg=self.norm_cfg, |
|
conv_cfg=self.conv_cfg, |
|
) |
|
) |
|
else: |
|
layers.append( |
|
block( |
|
inplanes, |
|
planes, |
|
stride, |
|
downsample=downsample, |
|
with_cp=self.with_cp, |
|
norm_cfg=self.norm_cfg, |
|
conv_cfg=self.conv_cfg, |
|
) |
|
) |
|
inplanes = planes * block.expansion |
|
for i in range(1, blocks): |
|
layers.append( |
|
block( |
|
inplanes, |
|
planes, |
|
with_cp=self.with_cp, |
|
norm_cfg=self.norm_cfg, |
|
conv_cfg=self.conv_cfg, |
|
) |
|
) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def _make_stage( |
|
self, layer_config, in_channels, multiscale_output=True, drop_paths=0.0 |
|
): |
|
"""Make each stage.""" |
|
num_modules = layer_config["num_modules"] |
|
num_branches = layer_config["num_branches"] |
|
num_blocks = layer_config["num_blocks"] |
|
num_channels = layer_config["num_channels"] |
|
block = self.blocks_dict[layer_config["block"]] |
|
|
|
num_heads = layer_config["num_heads"] |
|
num_window_sizes = layer_config["num_window_sizes"] |
|
num_mlp_ratios = layer_config["num_mlp_ratios"] |
|
|
|
hr_modules = [] |
|
for i in range(num_modules): |
|
|
|
if not multiscale_output and i == num_modules - 1: |
|
reset_multiscale_output = False |
|
else: |
|
reset_multiscale_output = True |
|
|
|
hr_modules.append( |
|
HighResolutionTransformerModule( |
|
num_branches, |
|
block, |
|
num_blocks, |
|
in_channels, |
|
num_channels, |
|
reset_multiscale_output, |
|
with_cp=self.with_cp, |
|
norm_cfg=self.norm_cfg, |
|
conv_cfg=self.conv_cfg, |
|
num_heads=num_heads, |
|
num_window_sizes=num_window_sizes, |
|
num_mlp_ratios=num_mlp_ratios, |
|
drop_paths=drop_paths[num_blocks[0] * i : num_blocks[0] * (i + 1)], |
|
) |
|
) |
|
|
|
return nn.Sequential(*hr_modules), in_channels |
|
|
|
def init_weights(self, pretrained=None): |
|
"""Initialize the weights in backbone. |
|
|
|
Args: |
|
pretrained (str, optional): Path to pre-trained weights. |
|
Defaults to None. |
|
""" |
|
if isinstance(pretrained, str): |
|
logger = get_root_logger() |
|
ckpt = load_checkpoint(self, pretrained, strict=False) |
|
if "model" in ckpt: |
|
msg = self.load_state_dict(ckpt["model"], strict=False) |
|
logger.info(msg) |
|
elif pretrained is None: |
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
"""mmseg: kaiming_init(m)""" |
|
normal_init(m, std=0.001) |
|
elif isinstance(m, (_BatchNorm, nn.GroupNorm)): |
|
constant_init(m, 1) |
|
|
|
if self.zero_init_residual: |
|
for m in self.modules(): |
|
if isinstance(m, Bottleneck): |
|
constant_init(m.norm3, 0) |
|
elif isinstance(m, BasicBlock): |
|
constant_init(m.norm2, 0) |
|
else: |
|
raise TypeError("pretrained must be a str or None") |
|
|
|
def forward(self, x): |
|
"""Forward function.""" |
|
x = self.conv1(x) |
|
x = self.norm1(x) |
|
x = self.relu(x) |
|
x = self.conv2(x) |
|
x = self.norm2(x) |
|
x = self.relu(x) |
|
x = self.layer1(x) |
|
|
|
x_list = [] |
|
for i in range(self.stage2_cfg["num_branches"]): |
|
if self.transition1[i] is not None: |
|
x_list.append(self.transition1[i](x)) |
|
else: |
|
x_list.append(x) |
|
y_list = self.stage2(x_list) |
|
|
|
x_list = [] |
|
for i in range(self.stage3_cfg["num_branches"]): |
|
if self.transition2[i] is not None: |
|
x_list.append(self.transition2[i](y_list[-1])) |
|
else: |
|
x_list.append(y_list[i]) |
|
y_list = self.stage3(x_list) |
|
|
|
x_list = [] |
|
for i in range(self.stage4_cfg["num_branches"]): |
|
if self.transition3[i] is not None: |
|
x_list.append(self.transition3[i](y_list[-1])) |
|
else: |
|
x_list.append(y_list[i]) |
|
y_list = self.stage4(x_list) |
|
|
|
return y_list |
|
|
|
def train(self, mode=True): |
|
"""Convert the model into training mode.""" |
|
super(HRT, self).train(mode) |
|
if mode and self.norm_eval: |
|
for m in self.modules(): |
|
if isinstance(m, _BatchNorm): |
|
m.eval() |
|
|