|
|
|
import copy |
|
|
|
import torch.nn as nn |
|
from mmcv.cnn import (build_conv_layer, build_norm_layer, constant_init, |
|
normal_init) |
|
from torch.nn.modules.batchnorm import _BatchNorm |
|
|
|
from mmpose.utils import get_root_logger |
|
from ..builder import BACKBONES |
|
from .resnet import BasicBlock, Bottleneck, get_expansion |
|
from .utils import load_checkpoint |
|
|
|
|
|
class HRModule(nn.Module): |
|
"""High-Resolution Module for HRNet. |
|
|
|
In this module, every branch has 4 BasicBlocks/Bottlenecks. Fusion/Exchange |
|
is in this module. |
|
""" |
|
|
|
def __init__(self, |
|
num_branches, |
|
blocks, |
|
num_blocks, |
|
in_channels, |
|
num_channels, |
|
multiscale_output=False, |
|
with_cp=False, |
|
conv_cfg=None, |
|
norm_cfg=dict(type='BN'), |
|
upsample_cfg=dict(mode='nearest', align_corners=None)): |
|
|
|
|
|
norm_cfg = copy.deepcopy(norm_cfg) |
|
super().__init__() |
|
self._check_branches(num_branches, num_blocks, in_channels, |
|
num_channels) |
|
|
|
self.in_channels = in_channels |
|
self.num_branches = num_branches |
|
|
|
self.multiscale_output = multiscale_output |
|
self.norm_cfg = norm_cfg |
|
self.conv_cfg = conv_cfg |
|
self.upsample_cfg = upsample_cfg |
|
self.with_cp = with_cp |
|
self.branches = self._make_branches(num_branches, blocks, num_blocks, |
|
num_channels) |
|
self.fuse_layers = self._make_fuse_layers() |
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
@staticmethod |
|
def _check_branches(num_branches, num_blocks, in_channels, num_channels): |
|
"""Check input to avoid ValueError.""" |
|
if num_branches != len(num_blocks): |
|
error_msg = f'NUM_BRANCHES({num_branches}) ' \ |
|
f'!= NUM_BLOCKS({len(num_blocks)})' |
|
raise ValueError(error_msg) |
|
|
|
if num_branches != len(num_channels): |
|
error_msg = f'NUM_BRANCHES({num_branches}) ' \ |
|
f'!= NUM_CHANNELS({len(num_channels)})' |
|
raise ValueError(error_msg) |
|
|
|
if num_branches != len(in_channels): |
|
error_msg = f'NUM_BRANCHES({num_branches}) ' \ |
|
f'!= NUM_INCHANNELS({len(in_channels)})' |
|
raise ValueError(error_msg) |
|
|
|
def _make_one_branch(self, |
|
branch_index, |
|
block, |
|
num_blocks, |
|
num_channels, |
|
stride=1): |
|
"""Make one branch.""" |
|
downsample = None |
|
if stride != 1 or \ |
|
self.in_channels[branch_index] != \ |
|
num_channels[branch_index] * get_expansion(block): |
|
downsample = nn.Sequential( |
|
build_conv_layer( |
|
self.conv_cfg, |
|
self.in_channels[branch_index], |
|
num_channels[branch_index] * get_expansion(block), |
|
kernel_size=1, |
|
stride=stride, |
|
bias=False), |
|
build_norm_layer( |
|
self.norm_cfg, |
|
num_channels[branch_index] * get_expansion(block))[1]) |
|
|
|
layers = [] |
|
layers.append( |
|
block( |
|
self.in_channels[branch_index], |
|
num_channels[branch_index] * get_expansion(block), |
|
stride=stride, |
|
downsample=downsample, |
|
with_cp=self.with_cp, |
|
norm_cfg=self.norm_cfg, |
|
conv_cfg=self.conv_cfg)) |
|
self.in_channels[branch_index] = \ |
|
num_channels[branch_index] * get_expansion(block) |
|
for _ in range(1, num_blocks[branch_index]): |
|
layers.append( |
|
block( |
|
self.in_channels[branch_index], |
|
num_channels[branch_index] * get_expansion(block), |
|
with_cp=self.with_cp, |
|
norm_cfg=self.norm_cfg, |
|
conv_cfg=self.conv_cfg)) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def _make_branches(self, num_branches, block, num_blocks, num_channels): |
|
"""Make branches.""" |
|
branches = [] |
|
|
|
for i in range(num_branches): |
|
branches.append( |
|
self._make_one_branch(i, block, num_blocks, num_channels)) |
|
|
|
return nn.ModuleList(branches) |
|
|
|
def _make_fuse_layers(self): |
|
"""Make fuse layer.""" |
|
if self.num_branches == 1: |
|
return None |
|
|
|
num_branches = self.num_branches |
|
in_channels = self.in_channels |
|
fuse_layers = [] |
|
num_out_branches = num_branches if self.multiscale_output else 1 |
|
|
|
for i in range(num_out_branches): |
|
fuse_layer = [] |
|
for j in range(num_branches): |
|
if j > i: |
|
fuse_layer.append( |
|
nn.Sequential( |
|
build_conv_layer( |
|
self.conv_cfg, |
|
in_channels[j], |
|
in_channels[i], |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
bias=False), |
|
build_norm_layer(self.norm_cfg, in_channels[i])[1], |
|
nn.Upsample( |
|
scale_factor=2**(j - i), |
|
mode=self.upsample_cfg['mode'], |
|
align_corners=self. |
|
upsample_cfg['align_corners']))) |
|
elif j == i: |
|
fuse_layer.append(None) |
|
else: |
|
conv_downsamples = [] |
|
for k in range(i - j): |
|
if k == i - j - 1: |
|
conv_downsamples.append( |
|
nn.Sequential( |
|
build_conv_layer( |
|
self.conv_cfg, |
|
in_channels[j], |
|
in_channels[i], |
|
kernel_size=3, |
|
stride=2, |
|
padding=1, |
|
bias=False), |
|
build_norm_layer(self.norm_cfg, |
|
in_channels[i])[1])) |
|
else: |
|
conv_downsamples.append( |
|
nn.Sequential( |
|
build_conv_layer( |
|
self.conv_cfg, |
|
in_channels[j], |
|
in_channels[j], |
|
kernel_size=3, |
|
stride=2, |
|
padding=1, |
|
bias=False), |
|
build_norm_layer(self.norm_cfg, |
|
in_channels[j])[1], |
|
nn.ReLU(inplace=True))) |
|
fuse_layer.append(nn.Sequential(*conv_downsamples)) |
|
fuse_layers.append(nn.ModuleList(fuse_layer)) |
|
|
|
return nn.ModuleList(fuse_layers) |
|
|
|
def forward(self, x): |
|
"""Forward function.""" |
|
if self.num_branches == 1: |
|
return [self.branches[0](x[0])] |
|
|
|
for i in range(self.num_branches): |
|
x[i] = self.branches[i](x[i]) |
|
|
|
x_fuse = [] |
|
for i in range(len(self.fuse_layers)): |
|
y = 0 |
|
for j in range(self.num_branches): |
|
if i == j: |
|
y += x[j] |
|
else: |
|
y += self.fuse_layers[i][j](x[j]) |
|
x_fuse.append(self.relu(y)) |
|
return x_fuse |
|
|
|
|
|
@BACKBONES.register_module() |
|
class HRNet(nn.Module): |
|
"""HRNet backbone. |
|
|
|
`High-Resolution Representations for Labeling Pixels and Regions |
|
<https://arxiv.org/abs/1904.04514>`__ |
|
|
|
Args: |
|
extra (dict): detailed configuration for each stage of HRNet. |
|
in_channels (int): Number of input image channels. Default: 3. |
|
conv_cfg (dict): dictionary to construct and config conv layer. |
|
norm_cfg (dict): dictionary to construct and config norm layer. |
|
norm_eval (bool): Whether to set norm layers to eval mode, namely, |
|
freeze running stats (mean and var). Note: Effect on Batch Norm |
|
and its variants only. Default: False |
|
with_cp (bool): Use checkpoint or not. Using checkpoint will save some |
|
memory while slowing down the training speed. |
|
zero_init_residual (bool): whether to use zero init for last norm layer |
|
in resblocks to let them behave as identity. |
|
frozen_stages (int): Stages to be frozen (stop grad and set eval mode). |
|
-1 means not freezing any parameters. Default: -1. |
|
|
|
Example: |
|
>>> from mmpose.models import HRNet |
|
>>> import torch |
|
>>> extra = dict( |
|
>>> stage1=dict( |
|
>>> num_modules=1, |
|
>>> num_branches=1, |
|
>>> block='BOTTLENECK', |
|
>>> num_blocks=(4, ), |
|
>>> num_channels=(64, )), |
|
>>> stage2=dict( |
|
>>> num_modules=1, |
|
>>> num_branches=2, |
|
>>> block='BASIC', |
|
>>> num_blocks=(4, 4), |
|
>>> num_channels=(32, 64)), |
|
>>> stage3=dict( |
|
>>> num_modules=4, |
|
>>> num_branches=3, |
|
>>> block='BASIC', |
|
>>> num_blocks=(4, 4, 4), |
|
>>> num_channels=(32, 64, 128)), |
|
>>> stage4=dict( |
|
>>> num_modules=3, |
|
>>> num_branches=4, |
|
>>> block='BASIC', |
|
>>> num_blocks=(4, 4, 4, 4), |
|
>>> num_channels=(32, 64, 128, 256))) |
|
>>> self = HRNet(extra, in_channels=1) |
|
>>> self.eval() |
|
>>> inputs = torch.rand(1, 1, 32, 32) |
|
>>> level_outputs = self.forward(inputs) |
|
>>> for level_out in level_outputs: |
|
... print(tuple(level_out.shape)) |
|
(1, 32, 8, 8) |
|
""" |
|
|
|
blocks_dict = {'BASIC': BasicBlock, 'BOTTLENECK': Bottleneck} |
|
|
|
def __init__(self, |
|
extra, |
|
in_channels=3, |
|
conv_cfg=None, |
|
norm_cfg=dict(type='BN'), |
|
norm_eval=False, |
|
with_cp=False, |
|
zero_init_residual=False, |
|
frozen_stages=-1): |
|
|
|
norm_cfg = copy.deepcopy(norm_cfg) |
|
super().__init__() |
|
self.extra = extra |
|
self.conv_cfg = conv_cfg |
|
self.norm_cfg = norm_cfg |
|
self.norm_eval = norm_eval |
|
self.with_cp = with_cp |
|
self.zero_init_residual = zero_init_residual |
|
self.frozen_stages = frozen_stages |
|
|
|
|
|
self.norm1_name, norm1 = build_norm_layer(self.norm_cfg, 64, postfix=1) |
|
self.norm2_name, norm2 = build_norm_layer(self.norm_cfg, 64, postfix=2) |
|
|
|
self.conv1 = build_conv_layer( |
|
self.conv_cfg, |
|
in_channels, |
|
64, |
|
kernel_size=3, |
|
stride=2, |
|
padding=1, |
|
bias=False) |
|
|
|
self.add_module(self.norm1_name, norm1) |
|
self.conv2 = build_conv_layer( |
|
self.conv_cfg, |
|
64, |
|
64, |
|
kernel_size=3, |
|
stride=2, |
|
padding=1, |
|
bias=False) |
|
|
|
self.add_module(self.norm2_name, norm2) |
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
self.upsample_cfg = self.extra.get('upsample', { |
|
'mode': 'nearest', |
|
'align_corners': None |
|
}) |
|
|
|
|
|
self.stage1_cfg = self.extra['stage1'] |
|
num_channels = self.stage1_cfg['num_channels'][0] |
|
block_type = self.stage1_cfg['block'] |
|
num_blocks = self.stage1_cfg['num_blocks'][0] |
|
|
|
block = self.blocks_dict[block_type] |
|
stage1_out_channels = num_channels * get_expansion(block) |
|
self.layer1 = self._make_layer(block, 64, stage1_out_channels, |
|
num_blocks) |
|
|
|
|
|
self.stage2_cfg = self.extra['stage2'] |
|
num_channels = self.stage2_cfg['num_channels'] |
|
block_type = self.stage2_cfg['block'] |
|
|
|
block = self.blocks_dict[block_type] |
|
num_channels = [ |
|
channel * get_expansion(block) for channel in num_channels |
|
] |
|
self.transition1 = self._make_transition_layer([stage1_out_channels], |
|
num_channels) |
|
self.stage2, pre_stage_channels = self._make_stage( |
|
self.stage2_cfg, num_channels) |
|
|
|
|
|
self.stage3_cfg = self.extra['stage3'] |
|
num_channels = self.stage3_cfg['num_channels'] |
|
block_type = self.stage3_cfg['block'] |
|
|
|
block = self.blocks_dict[block_type] |
|
num_channels = [ |
|
channel * get_expansion(block) for channel in num_channels |
|
] |
|
self.transition2 = self._make_transition_layer(pre_stage_channels, |
|
num_channels) |
|
self.stage3, pre_stage_channels = self._make_stage( |
|
self.stage3_cfg, num_channels) |
|
|
|
|
|
self.stage4_cfg = self.extra['stage4'] |
|
num_channels = self.stage4_cfg['num_channels'] |
|
block_type = self.stage4_cfg['block'] |
|
|
|
block = self.blocks_dict[block_type] |
|
num_channels = [ |
|
channel * get_expansion(block) for channel in num_channels |
|
] |
|
self.transition3 = self._make_transition_layer(pre_stage_channels, |
|
num_channels) |
|
|
|
self.stage4, pre_stage_channels = self._make_stage( |
|
self.stage4_cfg, |
|
num_channels, |
|
multiscale_output=self.stage4_cfg.get('multiscale_output', False)) |
|
|
|
self._freeze_stages() |
|
|
|
@property |
|
def norm1(self): |
|
"""nn.Module: the normalization layer named "norm1" """ |
|
return getattr(self, self.norm1_name) |
|
|
|
@property |
|
def norm2(self): |
|
"""nn.Module: the normalization layer named "norm2" """ |
|
return getattr(self, self.norm2_name) |
|
|
|
def _make_transition_layer(self, num_channels_pre_layer, |
|
num_channels_cur_layer): |
|
"""Make transition layer.""" |
|
num_branches_cur = len(num_channels_cur_layer) |
|
num_branches_pre = len(num_channels_pre_layer) |
|
|
|
transition_layers = [] |
|
for i in range(num_branches_cur): |
|
if i < num_branches_pre: |
|
if num_channels_cur_layer[i] != num_channels_pre_layer[i]: |
|
transition_layers.append( |
|
nn.Sequential( |
|
build_conv_layer( |
|
self.conv_cfg, |
|
num_channels_pre_layer[i], |
|
num_channels_cur_layer[i], |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
bias=False), |
|
build_norm_layer(self.norm_cfg, |
|
num_channels_cur_layer[i])[1], |
|
nn.ReLU(inplace=True))) |
|
else: |
|
transition_layers.append(None) |
|
else: |
|
conv_downsamples = [] |
|
for j in range(i + 1 - num_branches_pre): |
|
in_channels = num_channels_pre_layer[-1] |
|
out_channels = num_channels_cur_layer[i] \ |
|
if j == i - num_branches_pre else in_channels |
|
conv_downsamples.append( |
|
nn.Sequential( |
|
build_conv_layer( |
|
self.conv_cfg, |
|
in_channels, |
|
out_channels, |
|
kernel_size=3, |
|
stride=2, |
|
padding=1, |
|
bias=False), |
|
build_norm_layer(self.norm_cfg, out_channels)[1], |
|
nn.ReLU(inplace=True))) |
|
transition_layers.append(nn.Sequential(*conv_downsamples)) |
|
|
|
return nn.ModuleList(transition_layers) |
|
|
|
def _make_layer(self, block, in_channels, out_channels, blocks, stride=1): |
|
"""Make layer.""" |
|
downsample = None |
|
if stride != 1 or in_channels != out_channels: |
|
downsample = nn.Sequential( |
|
build_conv_layer( |
|
self.conv_cfg, |
|
in_channels, |
|
out_channels, |
|
kernel_size=1, |
|
stride=stride, |
|
bias=False), |
|
build_norm_layer(self.norm_cfg, out_channels)[1]) |
|
|
|
layers = [] |
|
layers.append( |
|
block( |
|
in_channels, |
|
out_channels, |
|
stride=stride, |
|
downsample=downsample, |
|
with_cp=self.with_cp, |
|
norm_cfg=self.norm_cfg, |
|
conv_cfg=self.conv_cfg)) |
|
for _ in range(1, blocks): |
|
layers.append( |
|
block( |
|
out_channels, |
|
out_channels, |
|
with_cp=self.with_cp, |
|
norm_cfg=self.norm_cfg, |
|
conv_cfg=self.conv_cfg)) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def _make_stage(self, layer_config, in_channels, multiscale_output=True): |
|
"""Make stage.""" |
|
num_modules = layer_config['num_modules'] |
|
num_branches = layer_config['num_branches'] |
|
num_blocks = layer_config['num_blocks'] |
|
num_channels = layer_config['num_channels'] |
|
block = self.blocks_dict[layer_config['block']] |
|
|
|
hr_modules = [] |
|
for i in range(num_modules): |
|
|
|
if not multiscale_output and i == num_modules - 1: |
|
reset_multiscale_output = False |
|
else: |
|
reset_multiscale_output = True |
|
|
|
hr_modules.append( |
|
HRModule( |
|
num_branches, |
|
block, |
|
num_blocks, |
|
in_channels, |
|
num_channels, |
|
reset_multiscale_output, |
|
with_cp=self.with_cp, |
|
norm_cfg=self.norm_cfg, |
|
conv_cfg=self.conv_cfg, |
|
upsample_cfg=self.upsample_cfg)) |
|
|
|
in_channels = hr_modules[-1].in_channels |
|
|
|
return nn.Sequential(*hr_modules), in_channels |
|
|
|
def _freeze_stages(self): |
|
"""Freeze parameters.""" |
|
if self.frozen_stages >= 0: |
|
self.norm1.eval() |
|
self.norm2.eval() |
|
|
|
for m in [self.conv1, self.norm1, self.conv2, self.norm2]: |
|
for param in m.parameters(): |
|
param.requires_grad = False |
|
|
|
for i in range(1, self.frozen_stages + 1): |
|
if i == 1: |
|
m = getattr(self, 'layer1') |
|
else: |
|
m = getattr(self, f'stage{i}') |
|
|
|
m.eval() |
|
for param in m.parameters(): |
|
param.requires_grad = False |
|
|
|
if i < 4: |
|
m = getattr(self, f'transition{i}') |
|
m.eval() |
|
for param in m.parameters(): |
|
param.requires_grad = False |
|
|
|
def init_weights(self, pretrained=None): |
|
"""Initialize the weights in backbone. |
|
|
|
Args: |
|
pretrained (str, optional): Path to pre-trained weights. |
|
Defaults to None. |
|
""" |
|
if isinstance(pretrained, str): |
|
logger = get_root_logger() |
|
load_checkpoint(self, pretrained, strict=False, logger=logger) |
|
elif pretrained is None: |
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
normal_init(m, std=0.001) |
|
elif isinstance(m, (_BatchNorm, nn.GroupNorm)): |
|
constant_init(m, 1) |
|
|
|
if self.zero_init_residual: |
|
for m in self.modules(): |
|
if isinstance(m, Bottleneck): |
|
constant_init(m.norm3, 0) |
|
elif isinstance(m, BasicBlock): |
|
constant_init(m.norm2, 0) |
|
else: |
|
raise TypeError('pretrained must be a str or None') |
|
|
|
def forward(self, x): |
|
"""Forward function.""" |
|
x = self.conv1(x) |
|
x = self.norm1(x) |
|
x = self.relu(x) |
|
x = self.conv2(x) |
|
x = self.norm2(x) |
|
x = self.relu(x) |
|
x = self.layer1(x) |
|
|
|
x_list = [] |
|
for i in range(self.stage2_cfg['num_branches']): |
|
if self.transition1[i] is not None: |
|
x_list.append(self.transition1[i](x)) |
|
else: |
|
x_list.append(x) |
|
y_list = self.stage2(x_list) |
|
|
|
x_list = [] |
|
for i in range(self.stage3_cfg['num_branches']): |
|
if self.transition2[i] is not None: |
|
x_list.append(self.transition2[i](y_list[-1])) |
|
else: |
|
x_list.append(y_list[i]) |
|
y_list = self.stage3(x_list) |
|
|
|
x_list = [] |
|
for i in range(self.stage4_cfg['num_branches']): |
|
if self.transition3[i] is not None: |
|
x_list.append(self.transition3[i](y_list[-1])) |
|
else: |
|
x_list.append(y_list[i]) |
|
y_list = self.stage4(x_list) |
|
|
|
return y_list |
|
|
|
def train(self, mode=True): |
|
"""Convert the model into training mode.""" |
|
super().train(mode) |
|
self._freeze_stages() |
|
if mode and self.norm_eval: |
|
for m in self.modules(): |
|
if isinstance(m, _BatchNorm): |
|
m.eval() |
|
|