mart9992's picture
m
2cd560a
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import torch.nn as nn
from mmcv.cnn import ConvModule, constant_init, normal_init
from torch.nn.modules.batchnorm import _BatchNorm
from mmpose.utils import get_root_logger
from ..builder import BACKBONES
from .base_backbone import BaseBackbone
from .resnet import BasicBlock, ResLayer
from .utils import load_checkpoint
class HourglassModule(nn.Module):
"""Hourglass Module for HourglassNet backbone.
Generate module recursively and use BasicBlock as the base unit.
Args:
depth (int): Depth of current HourglassModule.
stage_channels (list[int]): Feature channels of sub-modules in current
and follow-up HourglassModule.
stage_blocks (list[int]): Number of sub-modules stacked in current and
follow-up HourglassModule.
norm_cfg (dict): Dictionary to construct and config norm layer.
"""
def __init__(self,
depth,
stage_channels,
stage_blocks,
norm_cfg=dict(type='BN', requires_grad=True)):
# Protect mutable default arguments
norm_cfg = copy.deepcopy(norm_cfg)
super().__init__()
self.depth = depth
cur_block = stage_blocks[0]
next_block = stage_blocks[1]
cur_channel = stage_channels[0]
next_channel = stage_channels[1]
self.up1 = ResLayer(
BasicBlock, cur_block, cur_channel, cur_channel, norm_cfg=norm_cfg)
self.low1 = ResLayer(
BasicBlock,
cur_block,
cur_channel,
next_channel,
stride=2,
norm_cfg=norm_cfg)
if self.depth > 1:
self.low2 = HourglassModule(depth - 1, stage_channels[1:],
stage_blocks[1:])
else:
self.low2 = ResLayer(
BasicBlock,
next_block,
next_channel,
next_channel,
norm_cfg=norm_cfg)
self.low3 = ResLayer(
BasicBlock,
cur_block,
next_channel,
cur_channel,
norm_cfg=norm_cfg,
downsample_first=False)
self.up2 = nn.Upsample(scale_factor=2)
def forward(self, x):
"""Model forward function."""
up1 = self.up1(x)
low1 = self.low1(x)
low2 = self.low2(low1)
low3 = self.low3(low2)
up2 = self.up2(low3)
return up1 + up2
@BACKBONES.register_module()
class HourglassNet(BaseBackbone):
"""HourglassNet backbone.
Stacked Hourglass Networks for Human Pose Estimation.
More details can be found in the `paper
<https://arxiv.org/abs/1603.06937>`__ .
Args:
downsample_times (int): Downsample times in a HourglassModule.
num_stacks (int): Number of HourglassModule modules stacked,
1 for Hourglass-52, 2 for Hourglass-104.
stage_channels (list[int]): Feature channel of each sub-module in a
HourglassModule.
stage_blocks (list[int]): Number of sub-modules stacked in a
HourglassModule.
feat_channel (int): Feature channel of conv after a HourglassModule.
norm_cfg (dict): Dictionary to construct and config norm layer.
Example:
>>> from mmpose.models import HourglassNet
>>> import torch
>>> self = HourglassNet()
>>> self.eval()
>>> inputs = torch.rand(1, 3, 511, 511)
>>> level_outputs = self.forward(inputs)
>>> for level_output in level_outputs:
... print(tuple(level_output.shape))
(1, 256, 128, 128)
(1, 256, 128, 128)
"""
def __init__(self,
downsample_times=5,
num_stacks=2,
stage_channels=(256, 256, 384, 384, 384, 512),
stage_blocks=(2, 2, 2, 2, 2, 4),
feat_channel=256,
norm_cfg=dict(type='BN', requires_grad=True)):
# Protect mutable default arguments
norm_cfg = copy.deepcopy(norm_cfg)
super().__init__()
self.num_stacks = num_stacks
assert self.num_stacks >= 1
assert len(stage_channels) == len(stage_blocks)
assert len(stage_channels) > downsample_times
cur_channel = stage_channels[0]
self.stem = nn.Sequential(
ConvModule(3, 128, 7, padding=3, stride=2, norm_cfg=norm_cfg),
ResLayer(BasicBlock, 1, 128, 256, stride=2, norm_cfg=norm_cfg))
self.hourglass_modules = nn.ModuleList([
HourglassModule(downsample_times, stage_channels, stage_blocks)
for _ in range(num_stacks)
])
self.inters = ResLayer(
BasicBlock,
num_stacks - 1,
cur_channel,
cur_channel,
norm_cfg=norm_cfg)
self.conv1x1s = nn.ModuleList([
ConvModule(
cur_channel, cur_channel, 1, norm_cfg=norm_cfg, act_cfg=None)
for _ in range(num_stacks - 1)
])
self.out_convs = nn.ModuleList([
ConvModule(
cur_channel, feat_channel, 3, padding=1, norm_cfg=norm_cfg)
for _ in range(num_stacks)
])
self.remap_convs = nn.ModuleList([
ConvModule(
feat_channel, cur_channel, 1, norm_cfg=norm_cfg, act_cfg=None)
for _ in range(num_stacks - 1)
])
self.relu = nn.ReLU(inplace=True)
def init_weights(self, pretrained=None):
"""Initialize the weights in backbone.
Args:
pretrained (str, optional): Path to pre-trained weights.
Defaults to None.
"""
if isinstance(pretrained, str):
logger = get_root_logger()
load_checkpoint(self, pretrained, strict=False, logger=logger)
elif pretrained is None:
for m in self.modules():
if isinstance(m, nn.Conv2d):
normal_init(m, std=0.001)
elif isinstance(m, (_BatchNorm, nn.GroupNorm)):
constant_init(m, 1)
else:
raise TypeError('pretrained must be a str or None')
def forward(self, x):
"""Model forward function."""
inter_feat = self.stem(x)
out_feats = []
for ind in range(self.num_stacks):
single_hourglass = self.hourglass_modules[ind]
out_conv = self.out_convs[ind]
hourglass_feat = single_hourglass(inter_feat)
out_feat = out_conv(hourglass_feat)
out_feats.append(out_feat)
if ind < self.num_stacks - 1:
inter_feat = self.conv1x1s[ind](
inter_feat) + self.remap_convs[ind](
out_feat)
inter_feat = self.inters[ind](self.relu(inter_feat))
return out_feats