|
|
|
import torch.nn as nn |
|
|
|
from ..builder import BACKBONES |
|
from .base_backbone import BaseBackbone |
|
|
|
|
|
@BACKBONES.register_module() |
|
class AlexNet(BaseBackbone): |
|
"""`AlexNet <https://en.wikipedia.org/wiki/AlexNet>`__ backbone. |
|
|
|
The input for AlexNet is a 224x224 RGB image. |
|
|
|
Args: |
|
num_classes (int): number of classes for classification. |
|
The default value is -1, which uses the backbone as |
|
a feature extractor without the top classifier. |
|
""" |
|
|
|
def __init__(self, num_classes=-1): |
|
super().__init__() |
|
self.num_classes = num_classes |
|
self.features = nn.Sequential( |
|
nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2), |
|
nn.ReLU(inplace=True), |
|
nn.MaxPool2d(kernel_size=3, stride=2), |
|
nn.Conv2d(64, 192, kernel_size=5, padding=2), |
|
nn.ReLU(inplace=True), |
|
nn.MaxPool2d(kernel_size=3, stride=2), |
|
nn.Conv2d(192, 384, kernel_size=3, padding=1), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(384, 256, kernel_size=3, padding=1), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(256, 256, kernel_size=3, padding=1), |
|
nn.ReLU(inplace=True), |
|
nn.MaxPool2d(kernel_size=3, stride=2), |
|
) |
|
if self.num_classes > 0: |
|
self.classifier = nn.Sequential( |
|
nn.Dropout(), |
|
nn.Linear(256 * 6 * 6, 4096), |
|
nn.ReLU(inplace=True), |
|
nn.Dropout(), |
|
nn.Linear(4096, 4096), |
|
nn.ReLU(inplace=True), |
|
nn.Linear(4096, num_classes), |
|
) |
|
|
|
def forward(self, x): |
|
|
|
x = self.features(x) |
|
if self.num_classes > 0: |
|
x = x.view(x.size(0), 256 * 6 * 6) |
|
x = self.classifier(x) |
|
|
|
return x |
|
|