|
import torch |
|
import numpy as np |
|
import scipy |
|
from config import cfg |
|
from torch.nn import functional as F |
|
from utils.geometry import rotation_matrix_to_angle_axis |
|
|
|
def cam2pixel(cam_coord, f, c): |
|
x = cam_coord[:,0] / cam_coord[:,2] * f[0] + c[0] |
|
y = cam_coord[:,1] / cam_coord[:,2] * f[1] + c[1] |
|
z = cam_coord[:,2] |
|
return np.stack((x,y,z),1) |
|
|
|
def pixel2cam(pixel_coord, f, c): |
|
x = (pixel_coord[:,0] - c[0]) / f[0] * pixel_coord[:,2] |
|
y = (pixel_coord[:,1] - c[1]) / f[1] * pixel_coord[:,2] |
|
z = pixel_coord[:,2] |
|
return np.stack((x,y,z),1) |
|
|
|
def world2cam(world_coord, R, t): |
|
cam_coord = np.dot(R, world_coord.transpose(1,0)).transpose(1,0) + t.reshape(1,3) |
|
return cam_coord |
|
|
|
def cam2world(cam_coord, R, t): |
|
world_coord = np.dot(np.linalg.inv(R), (cam_coord - t.reshape(1,3)).transpose(1,0)).transpose(1,0) |
|
return world_coord |
|
|
|
def rigid_transform_3D(A, B): |
|
n, dim = A.shape |
|
centroid_A = np.mean(A, axis = 0) |
|
centroid_B = np.mean(B, axis = 0) |
|
H = np.dot(np.transpose(A - centroid_A), B - centroid_B) / n |
|
U, s, V = np.linalg.svd(H) |
|
R = np.dot(np.transpose(V), np.transpose(U)) |
|
if np.linalg.det(R) < 0: |
|
s[-1] = -s[-1] |
|
V[2] = -V[2] |
|
R = np.dot(np.transpose(V), np.transpose(U)) |
|
|
|
varP = np.var(A, axis=0).sum() |
|
c = 1/varP * np.sum(s) |
|
|
|
t = -np.dot(c*R, np.transpose(centroid_A)) + np.transpose(centroid_B) |
|
return c, R, t |
|
|
|
def rigid_align(A, B): |
|
c, R, t = rigid_transform_3D(A, B) |
|
A2 = np.transpose(np.dot(c*R, np.transpose(A))) + t |
|
return A2 |
|
|
|
def transform_joint_to_other_db(src_joint, src_name, dst_name): |
|
src_joint_num = len(src_name) |
|
dst_joint_num = len(dst_name) |
|
|
|
new_joint = np.zeros(((dst_joint_num,) + src_joint.shape[1:]), dtype=np.float32) |
|
for src_idx in range(len(src_name)): |
|
name = src_name[src_idx] |
|
if name in dst_name: |
|
dst_idx = dst_name.index(name) |
|
new_joint[dst_idx] = src_joint[src_idx] |
|
|
|
return new_joint |
|
|
|
def rot6d_to_axis_angle(x): |
|
batch_size = x.shape[0] |
|
|
|
x = x.view(-1,3,2) |
|
a1 = x[:, :, 0] |
|
a2 = x[:, :, 1] |
|
b1 = F.normalize(a1) |
|
b2 = F.normalize(a2 - torch.einsum('bi,bi->b', b1, a2).unsqueeze(-1) * b1) |
|
b3 = torch.cross(b1, b2) |
|
rot_mat = torch.stack((b1, b2, b3), dim=-1) |
|
|
|
rot_mat = torch.cat([rot_mat,torch.zeros((batch_size,3,1)).cuda().float()],2) |
|
axis_angle = rotation_matrix_to_angle_axis(rot_mat).reshape(-1,3) |
|
axis_angle[torch.isnan(axis_angle)] = 0.0 |
|
return axis_angle |
|
|
|
def sample_joint_features(img_feat, joint_xy): |
|
height, width = img_feat.shape[2:] |
|
x = joint_xy[:,:,0] / (width-1) * 2 - 1 |
|
y = joint_xy[:,:,1] / (height-1) * 2 - 1 |
|
grid = torch.stack((x,y),2)[:,:,None,:] |
|
img_feat = F.grid_sample(img_feat, grid, align_corners=True)[:,:,:,0] |
|
img_feat = img_feat.permute(0,2,1).contiguous() |
|
return img_feat |
|
|
|
|
|
def soft_argmax_2d(heatmap2d): |
|
batch_size = heatmap2d.shape[0] |
|
height, width = heatmap2d.shape[2:] |
|
heatmap2d = heatmap2d.reshape((batch_size, -1, height*width)) |
|
heatmap2d = F.softmax(heatmap2d, 2) |
|
heatmap2d = heatmap2d.reshape((batch_size, -1, height, width)) |
|
|
|
accu_x = heatmap2d.sum(dim=(2)) |
|
accu_y = heatmap2d.sum(dim=(3)) |
|
|
|
accu_x = accu_x * torch.arange(width).float().cuda()[None,None,:] |
|
accu_y = accu_y * torch.arange(height).float().cuda()[None,None,:] |
|
|
|
accu_x = accu_x.sum(dim=2, keepdim=True) |
|
accu_y = accu_y.sum(dim=2, keepdim=True) |
|
|
|
coord_out = torch.cat((accu_x, accu_y), dim=2) |
|
return coord_out |
|
|
|
def soft_argmax_3d(heatmap3d): |
|
batch_size = heatmap3d.shape[0] |
|
depth, height, width = heatmap3d.shape[2:] |
|
heatmap3d = heatmap3d.reshape((batch_size, -1, depth*height*width)) |
|
heatmap3d = F.softmax(heatmap3d, 2) |
|
heatmap3d = heatmap3d.reshape((batch_size, -1, depth, height, width)) |
|
|
|
accu_x = heatmap3d.sum(dim=(2,3)) |
|
accu_y = heatmap3d.sum(dim=(2,4)) |
|
accu_z = heatmap3d.sum(dim=(3,4)) |
|
|
|
accu_x = accu_x * torch.arange(width).float().cuda()[None,None,:] |
|
accu_y = accu_y * torch.arange(height).float().cuda()[None,None,:] |
|
accu_z = accu_z * torch.arange(depth).float().cuda()[None,None,:] |
|
|
|
accu_x = accu_x.sum(dim=2, keepdim=True) |
|
accu_y = accu_y.sum(dim=2, keepdim=True) |
|
accu_z = accu_z.sum(dim=2, keepdim=True) |
|
|
|
coord_out = torch.cat((accu_x, accu_y, accu_z), dim=2) |
|
return coord_out |
|
|
|
def restore_bbox(bbox_center, bbox_size, aspect_ratio, extension_ratio): |
|
bbox = bbox_center.view(-1,1,2) + torch.cat((-bbox_size.view(-1,1,2)/2., bbox_size.view(-1,1,2)/2.),1) |
|
bbox[:,:,0] = bbox[:,:,0] / cfg.output_hm_shape[2] * cfg.input_body_shape[1] |
|
bbox[:,:,1] = bbox[:,:,1] / cfg.output_hm_shape[1] * cfg.input_body_shape[0] |
|
bbox = bbox.view(-1,4) |
|
|
|
|
|
bbox[:,2] = bbox[:,2] - bbox[:,0] |
|
bbox[:,3] = bbox[:,3] - bbox[:,1] |
|
|
|
|
|
w = bbox[:,2] |
|
h = bbox[:,3] |
|
c_x = bbox[:,0] + w/2. |
|
c_y = bbox[:,1] + h/2. |
|
|
|
mask1 = w > (aspect_ratio * h) |
|
mask2 = w < (aspect_ratio * h) |
|
h[mask1] = w[mask1] / aspect_ratio |
|
w[mask2] = h[mask2] * aspect_ratio |
|
|
|
bbox[:,2] = w*extension_ratio |
|
bbox[:,3] = h*extension_ratio |
|
bbox[:,0] = c_x - bbox[:,2]/2. |
|
bbox[:,1] = c_y - bbox[:,3]/2. |
|
|
|
|
|
bbox[:,2] = bbox[:,2] + bbox[:,0] |
|
bbox[:,3] = bbox[:,3] + bbox[:,1] |
|
return bbox |
|
|