mart9992's picture
m
2cd560a
raw
history blame
5.59 kB
import torch
import numpy as np
import scipy
from config import cfg
from torch.nn import functional as F
from utils.geometry import rotation_matrix_to_angle_axis
def cam2pixel(cam_coord, f, c):
x = cam_coord[:,0] / cam_coord[:,2] * f[0] + c[0]
y = cam_coord[:,1] / cam_coord[:,2] * f[1] + c[1]
z = cam_coord[:,2]
return np.stack((x,y,z),1)
def pixel2cam(pixel_coord, f, c):
x = (pixel_coord[:,0] - c[0]) / f[0] * pixel_coord[:,2]
y = (pixel_coord[:,1] - c[1]) / f[1] * pixel_coord[:,2]
z = pixel_coord[:,2]
return np.stack((x,y,z),1)
def world2cam(world_coord, R, t):
cam_coord = np.dot(R, world_coord.transpose(1,0)).transpose(1,0) + t.reshape(1,3)
return cam_coord
def cam2world(cam_coord, R, t):
world_coord = np.dot(np.linalg.inv(R), (cam_coord - t.reshape(1,3)).transpose(1,0)).transpose(1,0)
return world_coord
def rigid_transform_3D(A, B):
n, dim = A.shape
centroid_A = np.mean(A, axis = 0)
centroid_B = np.mean(B, axis = 0)
H = np.dot(np.transpose(A - centroid_A), B - centroid_B) / n
U, s, V = np.linalg.svd(H)
R = np.dot(np.transpose(V), np.transpose(U))
if np.linalg.det(R) < 0:
s[-1] = -s[-1]
V[2] = -V[2]
R = np.dot(np.transpose(V), np.transpose(U))
varP = np.var(A, axis=0).sum()
c = 1/varP * np.sum(s)
t = -np.dot(c*R, np.transpose(centroid_A)) + np.transpose(centroid_B)
return c, R, t
def rigid_align(A, B):
c, R, t = rigid_transform_3D(A, B)
A2 = np.transpose(np.dot(c*R, np.transpose(A))) + t
return A2
def transform_joint_to_other_db(src_joint, src_name, dst_name):
src_joint_num = len(src_name)
dst_joint_num = len(dst_name)
new_joint = np.zeros(((dst_joint_num,) + src_joint.shape[1:]), dtype=np.float32)
for src_idx in range(len(src_name)):
name = src_name[src_idx]
if name in dst_name:
dst_idx = dst_name.index(name)
new_joint[dst_idx] = src_joint[src_idx]
return new_joint
def rot6d_to_axis_angle(x):
batch_size = x.shape[0]
x = x.view(-1,3,2)
a1 = x[:, :, 0]
a2 = x[:, :, 1]
b1 = F.normalize(a1)
b2 = F.normalize(a2 - torch.einsum('bi,bi->b', b1, a2).unsqueeze(-1) * b1)
b3 = torch.cross(b1, b2)
rot_mat = torch.stack((b1, b2, b3), dim=-1) # 3x3 rotation matrix
rot_mat = torch.cat([rot_mat,torch.zeros((batch_size,3,1)).cuda().float()],2) # 3x4 rotation matrix
axis_angle = rotation_matrix_to_angle_axis(rot_mat).reshape(-1,3) # axis-angle
axis_angle[torch.isnan(axis_angle)] = 0.0
return axis_angle
def sample_joint_features(img_feat, joint_xy):
height, width = img_feat.shape[2:]
x = joint_xy[:,:,0] / (width-1) * 2 - 1
y = joint_xy[:,:,1] / (height-1) * 2 - 1
grid = torch.stack((x,y),2)[:,:,None,:]
img_feat = F.grid_sample(img_feat, grid, align_corners=True)[:,:,:,0] # batch_size, channel_dim, joint_num
img_feat = img_feat.permute(0,2,1).contiguous() # batch_size, joint_num, channel_dim
return img_feat
def soft_argmax_2d(heatmap2d):
batch_size = heatmap2d.shape[0]
height, width = heatmap2d.shape[2:]
heatmap2d = heatmap2d.reshape((batch_size, -1, height*width))
heatmap2d = F.softmax(heatmap2d, 2)
heatmap2d = heatmap2d.reshape((batch_size, -1, height, width))
accu_x = heatmap2d.sum(dim=(2))
accu_y = heatmap2d.sum(dim=(3))
accu_x = accu_x * torch.arange(width).float().cuda()[None,None,:]
accu_y = accu_y * torch.arange(height).float().cuda()[None,None,:]
accu_x = accu_x.sum(dim=2, keepdim=True)
accu_y = accu_y.sum(dim=2, keepdim=True)
coord_out = torch.cat((accu_x, accu_y), dim=2)
return coord_out
def soft_argmax_3d(heatmap3d):
batch_size = heatmap3d.shape[0]
depth, height, width = heatmap3d.shape[2:]
heatmap3d = heatmap3d.reshape((batch_size, -1, depth*height*width))
heatmap3d = F.softmax(heatmap3d, 2)
heatmap3d = heatmap3d.reshape((batch_size, -1, depth, height, width))
accu_x = heatmap3d.sum(dim=(2,3))
accu_y = heatmap3d.sum(dim=(2,4))
accu_z = heatmap3d.sum(dim=(3,4))
accu_x = accu_x * torch.arange(width).float().cuda()[None,None,:]
accu_y = accu_y * torch.arange(height).float().cuda()[None,None,:]
accu_z = accu_z * torch.arange(depth).float().cuda()[None,None,:]
accu_x = accu_x.sum(dim=2, keepdim=True)
accu_y = accu_y.sum(dim=2, keepdim=True)
accu_z = accu_z.sum(dim=2, keepdim=True)
coord_out = torch.cat((accu_x, accu_y, accu_z), dim=2)
return coord_out
def restore_bbox(bbox_center, bbox_size, aspect_ratio, extension_ratio):
bbox = bbox_center.view(-1,1,2) + torch.cat((-bbox_size.view(-1,1,2)/2., bbox_size.view(-1,1,2)/2.),1) # xyxy in (cfg.output_hm_shape[2], cfg.output_hm_shape[1]) space
bbox[:,:,0] = bbox[:,:,0] / cfg.output_hm_shape[2] * cfg.input_body_shape[1]
bbox[:,:,1] = bbox[:,:,1] / cfg.output_hm_shape[1] * cfg.input_body_shape[0]
bbox = bbox.view(-1,4)
# xyxy -> xywh
bbox[:,2] = bbox[:,2] - bbox[:,0]
bbox[:,3] = bbox[:,3] - bbox[:,1]
# aspect ratio preserving bbox
w = bbox[:,2]
h = bbox[:,3]
c_x = bbox[:,0] + w/2.
c_y = bbox[:,1] + h/2.
mask1 = w > (aspect_ratio * h)
mask2 = w < (aspect_ratio * h)
h[mask1] = w[mask1] / aspect_ratio
w[mask2] = h[mask2] * aspect_ratio
bbox[:,2] = w*extension_ratio
bbox[:,3] = h*extension_ratio
bbox[:,0] = c_x - bbox[:,2]/2.
bbox[:,1] = c_y - bbox[:,3]/2.
# xywh -> xyxy
bbox[:,2] = bbox[:,2] + bbox[:,0]
bbox[:,3] = bbox[:,3] + bbox[:,1]
return bbox