File size: 6,445 Bytes
2cd560a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
import os
import cv2
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import matplotlib as mpl
import os
os.environ["PYOPENGL_PLATFORM"] = "egl"
import pyrender
import trimesh
from config import cfg
def vis_keypoints_with_skeleton(img, kps, kps_lines, kp_thresh=0.4, alpha=1):
# Convert from plt 0-1 RGBA colors to 0-255 BGR colors for opencv.
cmap = plt.get_cmap('rainbow')
colors = [cmap(i) for i in np.linspace(0, 1, len(kps_lines) + 2)]
colors = [(c[2] * 255, c[1] * 255, c[0] * 255) for c in colors]
# Perform the drawing on a copy of the image, to allow for blending.
kp_mask = np.copy(img)
# Draw the keypoints.
for l in range(len(kps_lines)):
i1 = kps_lines[l][0]
i2 = kps_lines[l][1]
p1 = kps[0, i1].astype(np.int32), kps[1, i1].astype(np.int32)
p2 = kps[0, i2].astype(np.int32), kps[1, i2].astype(np.int32)
if kps[2, i1] > kp_thresh and kps[2, i2] > kp_thresh:
cv2.line(
kp_mask, p1, p2,
color=colors[l], thickness=2, lineType=cv2.LINE_AA)
if kps[2, i1] > kp_thresh:
cv2.circle(
kp_mask, p1,
radius=3, color=colors[l], thickness=-1, lineType=cv2.LINE_AA)
if kps[2, i2] > kp_thresh:
cv2.circle(
kp_mask, p2,
radius=3, color=colors[l], thickness=-1, lineType=cv2.LINE_AA)
# Blend the keypoints.
return cv2.addWeighted(img, 1.0 - alpha, kp_mask, alpha, 0)
def vis_keypoints(img, kps, alpha=1):
# Convert from plt 0-1 RGBA colors to 0-255 BGR colors for opencv.
cmap = plt.get_cmap('rainbow')
colors = [cmap(i) for i in np.linspace(0, 1, len(kps) + 2)]
colors = [(c[2] * 255, c[1] * 255, c[0] * 255) for c in colors]
# Perform the drawing on a copy of the image, to allow for blending.
kp_mask = np.copy(img)
# Draw the keypoints.
for i in range(len(kps)):
p = kps[i][0].astype(np.int32), kps[i][1].astype(np.int32)
cv2.circle(kp_mask, p, radius=3, color=colors[i], thickness=-1, lineType=cv2.LINE_AA)
# Blend the keypoints.
return cv2.addWeighted(img, 1.0 - alpha, kp_mask, alpha, 0)
def vis_mesh(img, mesh_vertex, alpha=0.5):
# Convert from plt 0-1 RGBA colors to 0-255 BGR colors for opencv.
cmap = plt.get_cmap('rainbow')
colors = [cmap(i) for i in np.linspace(0, 1, len(mesh_vertex))]
colors = [(c[2] * 255, c[1] * 255, c[0] * 255) for c in colors]
# Perform the drawing on a copy of the image, to allow for blending.
mask = np.copy(img)
# Draw the mesh
for i in range(len(mesh_vertex)):
p = mesh_vertex[i][0].astype(np.int32), mesh_vertex[i][1].astype(np.int32)
cv2.circle(mask, p, radius=3, color=colors[i], thickness=-1, lineType=cv2.LINE_AA)
# Blend the keypoints.
return cv2.addWeighted(img, 1.0 - alpha, mask, alpha, 0)
def vis_3d_skeleton(kpt_3d, kpt_3d_vis, kps_lines, filename=None):
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
# Convert from plt 0-1 RGBA colors to 0-255 BGR colors for opencv.
cmap = plt.get_cmap('rainbow')
colors = [cmap(i) for i in np.linspace(0, 1, len(kps_lines) + 2)]
colors = [np.array((c[2], c[1], c[0])) for c in colors]
for l in range(len(kps_lines)):
i1 = kps_lines[l][0]
i2 = kps_lines[l][1]
x = np.array([kpt_3d[i1, 0], kpt_3d[i2, 0]])
y = np.array([kpt_3d[i1, 1], kpt_3d[i2, 1]])
z = np.array([kpt_3d[i1, 2], kpt_3d[i2, 2]])
if kpt_3d_vis[i1, 0] > 0 and kpt_3d_vis[i2, 0] > 0:
ax.plot(x, z, -y, c=colors[l], linewidth=2)
if kpt_3d_vis[i1, 0] > 0:
ax.scatter(kpt_3d[i1, 0], kpt_3d[i1, 2], -kpt_3d[i1, 1], c=colors[l], marker='o')
if kpt_3d_vis[i2, 0] > 0:
ax.scatter(kpt_3d[i2, 0], kpt_3d[i2, 2], -kpt_3d[i2, 1], c=colors[l], marker='o')
x_r = np.array([0, cfg.input_shape[1]], dtype=np.float32)
y_r = np.array([0, cfg.input_shape[0]], dtype=np.float32)
z_r = np.array([0, 1], dtype=np.float32)
if filename is None:
ax.set_title('3D vis')
else:
ax.set_title(filename)
ax.set_xlabel('X Label')
ax.set_ylabel('Z Label')
ax.set_zlabel('Y Label')
ax.legend()
plt.show()
cv2.waitKey(0)
def save_obj(v, f, file_name='output.obj'):
obj_file = open(file_name, 'w')
for i in range(len(v)):
obj_file.write('v ' + str(v[i][0]) + ' ' + str(v[i][1]) + ' ' + str(v[i][2]) + '\n')
for i in range(len(f)):
obj_file.write('f ' + str(f[i][0] + 1) + '/' + str(f[i][0] + 1) + ' ' + str(f[i][1] + 1) + '/' + str(
f[i][1] + 1) + ' ' + str(f[i][2] + 1) + '/' + str(f[i][2] + 1) + '\n')
obj_file.close()
def render_mesh(img, mesh, face, cam_param, mesh_save_path=None):
# mesh
mesh = trimesh.Trimesh(mesh, face)
rot = trimesh.transformations.rotation_matrix(
np.radians(180), [1, 0, 0])
mesh.apply_transform(rot)
material = pyrender.MetallicRoughnessMaterial(metallicFactor=0.0, alphaMode='OPAQUE',
baseColorFactor=(1.0, 1.0, 0.9, 1.0))
mesh = pyrender.Mesh.from_trimesh(mesh, material=material, smooth=True)
scene = pyrender.Scene(ambient_light=(0.3, 0.3, 0.3))
scene.add(mesh, 'mesh')
focal, princpt = cam_param['focal'], cam_param['princpt']
camera = pyrender.IntrinsicsCamera(fx=focal[0], fy=focal[1], cx=princpt[0], cy=princpt[1])
scene.add(camera)
# renderer
renderer = pyrender.OffscreenRenderer(viewport_width=img.shape[1], viewport_height=img.shape[0], point_size=1.0)
# light
light = pyrender.DirectionalLight(color=[1.0, 1.0, 1.0], intensity=0.8)
light_pose = np.eye(4)
light_pose[:3, 3] = np.array([0, -1, 1])
scene.add(light, pose=light_pose)
light_pose[:3, 3] = np.array([0, 1, 1])
scene.add(light, pose=light_pose)
light_pose[:3, 3] = np.array([1, 1, 2])
scene.add(light, pose=light_pose)
# render
flags = (pyrender.RenderFlags.RGBA |
pyrender.RenderFlags.SKIP_CULL_FACES)
rgb, depth = renderer.render(scene, flags=flags)
renderer.delete()
rgb = rgb[:, :, :3].astype(np.float32)
valid_mask = (depth > 0)[:, :, None]
# save to image
img = rgb * valid_mask + img * (1 - valid_mask)
img_black_bg = rgb * valid_mask
return img, img_black_bg
|