File size: 12,646 Bytes
2cd560a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
from ..builder import LOSSES
from ..utils.geometry import batch_rodrigues
def perspective_projection(points, rotation, translation, focal_length,
camera_center):
"""This function computes the perspective projection of a set of 3D points.
Note:
- batch size: B
- point number: N
Args:
points (Tensor([B, N, 3])): A set of 3D points
rotation (Tensor([B, 3, 3])): Camera rotation matrix
translation (Tensor([B, 3])): Camera translation
focal_length (Tensor([B,])): Focal length
camera_center (Tensor([B, 2])): Camera center
Returns:
projected_points (Tensor([B, N, 2])): Projected 2D
points in image space.
"""
batch_size = points.shape[0]
K = torch.zeros([batch_size, 3, 3], device=points.device)
K[:, 0, 0] = focal_length
K[:, 1, 1] = focal_length
K[:, 2, 2] = 1.
K[:, :-1, -1] = camera_center
# Transform points
points = torch.einsum('bij,bkj->bki', rotation, points)
points = points + translation.unsqueeze(1)
# Apply perspective distortion
projected_points = points / points[:, :, -1].unsqueeze(-1)
# Apply camera intrinsics
projected_points = torch.einsum('bij,bkj->bki', K, projected_points)
projected_points = projected_points[:, :, :-1]
return projected_points
@LOSSES.register_module()
class MeshLoss(nn.Module):
"""Mix loss for 3D human mesh. It is composed of loss on 2D joints, 3D
joints, mesh vertices and smpl parameters (if any).
Args:
joints_2d_loss_weight (float): Weight for loss on 2D joints.
joints_3d_loss_weight (float): Weight for loss on 3D joints.
vertex_loss_weight (float): Weight for loss on 3D verteices.
smpl_pose_loss_weight (float): Weight for loss on SMPL
pose parameters.
smpl_beta_loss_weight (float): Weight for loss on SMPL
shape parameters.
img_res (int): Input image resolution.
focal_length (float): Focal length of camera model. Default=5000.
"""
def __init__(self,
joints_2d_loss_weight,
joints_3d_loss_weight,
vertex_loss_weight,
smpl_pose_loss_weight,
smpl_beta_loss_weight,
img_res,
focal_length=5000):
super().__init__()
# Per-vertex loss on the mesh
self.criterion_vertex = nn.L1Loss(reduction='none')
# Joints (2D and 3D) loss
self.criterion_joints_2d = nn.SmoothL1Loss(reduction='none')
self.criterion_joints_3d = nn.SmoothL1Loss(reduction='none')
# Loss for SMPL parameter regression
self.criterion_regr = nn.MSELoss(reduction='none')
self.joints_2d_loss_weight = joints_2d_loss_weight
self.joints_3d_loss_weight = joints_3d_loss_weight
self.vertex_loss_weight = vertex_loss_weight
self.smpl_pose_loss_weight = smpl_pose_loss_weight
self.smpl_beta_loss_weight = smpl_beta_loss_weight
self.focal_length = focal_length
self.img_res = img_res
def joints_2d_loss(self, pred_joints_2d, gt_joints_2d, joints_2d_visible):
"""Compute 2D reprojection loss on the joints.
The loss is weighted by joints_2d_visible.
"""
conf = joints_2d_visible.float()
loss = (conf *
self.criterion_joints_2d(pred_joints_2d, gt_joints_2d)).mean()
return loss
def joints_3d_loss(self, pred_joints_3d, gt_joints_3d, joints_3d_visible):
"""Compute 3D joints loss for the examples that 3D joint annotations
are available.
The loss is weighted by joints_3d_visible.
"""
conf = joints_3d_visible.float()
if len(gt_joints_3d) > 0:
gt_pelvis = (gt_joints_3d[:, 2, :] + gt_joints_3d[:, 3, :]) / 2
gt_joints_3d = gt_joints_3d - gt_pelvis[:, None, :]
pred_pelvis = (pred_joints_3d[:, 2, :] +
pred_joints_3d[:, 3, :]) / 2
pred_joints_3d = pred_joints_3d - pred_pelvis[:, None, :]
return (
conf *
self.criterion_joints_3d(pred_joints_3d, gt_joints_3d)).mean()
return pred_joints_3d.sum() * 0
def vertex_loss(self, pred_vertices, gt_vertices, has_smpl):
"""Compute 3D vertex loss for the examples that 3D human mesh
annotations are available.
The loss is weighted by the has_smpl.
"""
conf = has_smpl.float()
loss_vertex = self.criterion_vertex(pred_vertices, gt_vertices)
loss_vertex = (conf[:, None, None] * loss_vertex).mean()
return loss_vertex
def smpl_losses(self, pred_rotmat, pred_betas, gt_pose, gt_betas,
has_smpl):
"""Compute SMPL parameters loss for the examples that SMPL parameter
annotations are available.
The loss is weighted by has_smpl.
"""
conf = has_smpl.float()
gt_rotmat = batch_rodrigues(gt_pose.view(-1, 3)).view(-1, 24, 3, 3)
loss_regr_pose = self.criterion_regr(pred_rotmat, gt_rotmat)
loss_regr_betas = self.criterion_regr(pred_betas, gt_betas)
loss_regr_pose = (conf[:, None, None, None] * loss_regr_pose).mean()
loss_regr_betas = (conf[:, None] * loss_regr_betas).mean()
return loss_regr_pose, loss_regr_betas
def project_points(self, points_3d, camera):
"""Perform orthographic projection of 3D points using the camera
parameters, return projected 2D points in image plane.
Note:
- batch size: B
- point number: N
Args:
points_3d (Tensor([B, N, 3])): 3D points.
camera (Tensor([B, 3])): camera parameters with the
3 channel as (scale, translation_x, translation_y)
Returns:
Tensor([B, N, 2]): projected 2D points \
in image space.
"""
batch_size = points_3d.shape[0]
device = points_3d.device
cam_t = torch.stack([
camera[:, 1], camera[:, 2], 2 * self.focal_length /
(self.img_res * camera[:, 0] + 1e-9)
],
dim=-1)
camera_center = camera.new_zeros([batch_size, 2])
rot_t = torch.eye(
3, device=device,
dtype=points_3d.dtype).unsqueeze(0).expand(batch_size, -1, -1)
joints_2d = perspective_projection(
points_3d,
rotation=rot_t,
translation=cam_t,
focal_length=self.focal_length,
camera_center=camera_center)
return joints_2d
def forward(self, output, target):
"""Forward function.
Args:
output (dict): dict of network predicted results.
Keys: 'vertices', 'joints_3d', 'camera',
'pose'(optional), 'beta'(optional)
target (dict): dict of ground-truth labels.
Keys: 'vertices', 'joints_3d', 'joints_3d_visible',
'joints_2d', 'joints_2d_visible', 'pose', 'beta',
'has_smpl'
Returns:
dict: dict of losses.
"""
losses = {}
# Per-vertex loss for the shape
pred_vertices = output['vertices']
gt_vertices = target['vertices']
has_smpl = target['has_smpl']
loss_vertex = self.vertex_loss(pred_vertices, gt_vertices, has_smpl)
losses['vertex_loss'] = loss_vertex * self.vertex_loss_weight
# Compute loss on SMPL parameters, if available
if 'pose' in output.keys() and 'beta' in output.keys():
pred_rotmat = output['pose']
pred_betas = output['beta']
gt_pose = target['pose']
gt_betas = target['beta']
loss_regr_pose, loss_regr_betas = self.smpl_losses(
pred_rotmat, pred_betas, gt_pose, gt_betas, has_smpl)
losses['smpl_pose_loss'] = \
loss_regr_pose * self.smpl_pose_loss_weight
losses['smpl_beta_loss'] = \
loss_regr_betas * self.smpl_beta_loss_weight
# Compute 3D joints loss
pred_joints_3d = output['joints_3d']
gt_joints_3d = target['joints_3d']
joints_3d_visible = target['joints_3d_visible']
loss_joints_3d = self.joints_3d_loss(pred_joints_3d, gt_joints_3d,
joints_3d_visible)
losses['joints_3d_loss'] = loss_joints_3d * self.joints_3d_loss_weight
# Compute 2D reprojection loss for the 2D joints
pred_camera = output['camera']
gt_joints_2d = target['joints_2d']
joints_2d_visible = target['joints_2d_visible']
pred_joints_2d = self.project_points(pred_joints_3d, pred_camera)
# Normalize keypoints to [-1,1]
# The coordinate origin of pred_joints_2d is
# the center of the input image.
pred_joints_2d = 2 * pred_joints_2d / (self.img_res - 1)
# The coordinate origin of gt_joints_2d is
# the top left corner of the input image.
gt_joints_2d = 2 * gt_joints_2d / (self.img_res - 1) - 1
loss_joints_2d = self.joints_2d_loss(pred_joints_2d, gt_joints_2d,
joints_2d_visible)
losses['joints_2d_loss'] = loss_joints_2d * self.joints_2d_loss_weight
return losses
@LOSSES.register_module()
class GANLoss(nn.Module):
"""Define GAN loss.
Args:
gan_type (str): Support 'vanilla', 'lsgan', 'wgan', 'hinge'.
real_label_val (float): The value for real label. Default: 1.0.
fake_label_val (float): The value for fake label. Default: 0.0.
loss_weight (float): Loss weight. Default: 1.0.
Note that loss_weight is only for generators; and it is always 1.0
for discriminators.
"""
def __init__(self,
gan_type,
real_label_val=1.0,
fake_label_val=0.0,
loss_weight=1.0):
super().__init__()
self.gan_type = gan_type
self.loss_weight = loss_weight
self.real_label_val = real_label_val
self.fake_label_val = fake_label_val
if self.gan_type == 'vanilla':
self.loss = nn.BCEWithLogitsLoss()
elif self.gan_type == 'lsgan':
self.loss = nn.MSELoss()
elif self.gan_type == 'wgan':
self.loss = self._wgan_loss
elif self.gan_type == 'hinge':
self.loss = nn.ReLU()
else:
raise NotImplementedError(
f'GAN type {self.gan_type} is not implemented.')
@staticmethod
def _wgan_loss(input, target):
"""wgan loss.
Args:
input (Tensor): Input tensor.
target (bool): Target label.
Returns:
Tensor: wgan loss.
"""
return -input.mean() if target else input.mean()
def get_target_label(self, input, target_is_real):
"""Get target label.
Args:
input (Tensor): Input tensor.
target_is_real (bool): Whether the target is real or fake.
Returns:
(bool | Tensor): Target tensor. Return bool for wgan, \
otherwise, return Tensor.
"""
if self.gan_type == 'wgan':
return target_is_real
target_val = (
self.real_label_val if target_is_real else self.fake_label_val)
return input.new_ones(input.size()) * target_val
def forward(self, input, target_is_real, is_disc=False):
"""
Args:
input (Tensor): The input for the loss module, i.e., the network
prediction.
target_is_real (bool): Whether the targe is real or fake.
is_disc (bool): Whether the loss for discriminators or not.
Default: False.
Returns:
Tensor: GAN loss value.
"""
target_label = self.get_target_label(input, target_is_real)
if self.gan_type == 'hinge':
if is_disc: # for discriminators in hinge-gan
input = -input if target_is_real else input
loss = self.loss(1 + input).mean()
else: # for generators in hinge-gan
loss = -input.mean()
else: # other gan types
loss = self.loss(input, target_label)
# loss_weight is always 1.0 for discriminators
return loss if is_disc else loss * self.loss_weight
|