File size: 15,596 Bytes
2cd560a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 |
import numpy as np
import torch.nn as nn
from mmcv.cnn import normal_init
from mmpose.core.evaluation import (keypoint_pck_accuracy,
keypoints_from_regression)
from mmpose.core.post_processing import fliplr_regression
from mmpose.models.builder import HEADS, build_loss
import torch
import torch.nn as nn
import torch.distributions as distributions
from easydict import EasyDict
def rle_fliplr_regression(regression,
regression_score,
flip_pairs,
center_mode='static',
center_x=0.5,
center_index=0,
shift=True):
"""Flip human joints horizontally.
Note:
batch_size: N
num_keypoint: K
Args:
regression (np.ndarray([..., K, C])): Coordinates of keypoints, where K
is the joint number and C is the dimension. Example shapes are:
- [N, K, C]: a batch of keypoints where N is the batch size.
- [N, T, K, C]: a batch of pose sequences, where T is the frame
number.
flip_pairs (list[tuple()]): Pairs of keypoints which are mirrored
(for example, left ear -- right ear).
center_mode (str): The mode to set the center location on the x-axis
to flip around. Options are:
- static: use a static x value (see center_x also)
- root: use a root joint (see center_index also)
center_x (float): Set the x-axis location of the flip center. Only used
when center_mode=static.
center_index (int): Set the index of the root joint, whose x location
will be used as the flip center. Only used when center_mode=root.
Returns:
tuple: Flipped human joints.
- regression_flipped (np.ndarray([..., K, C])): Flipped joints.
"""
assert regression.ndim >= 2, f'Invalid pose shape {regression.shape}'
# flip
# width_dim = 48
# if shift:
# regression[:, :, 0] = - regression[:, :, 0] - 1 / (width_dim * 4)
# else:
# regression[:, :, 0] = -1 / width_dim - regression[:, :, 0]
allowed_center_mode = {'static', 'root'}
assert center_mode in allowed_center_mode, 'Get invalid center_mode ' \
f'{center_mode}, allowed choices are {allowed_center_mode}'
if center_mode == 'static':
x_c = center_x
elif center_mode == 'root':
assert regression.shape[-2] > center_index
x_c = regression[..., center_index:center_index + 1, 0]
regression_flipped = regression.copy()
regression_score_flipped = regression_score.copy()
# Swap left-right parts
for left, right in flip_pairs:
regression_flipped[..., left, :] = regression[..., right, :]
regression_flipped[..., right, :] = regression[..., left, :]
regression_score_flipped[..., left, :] = regression_score[..., right, :]
regression_score_flipped[..., right, :] = regression_score[..., left, :]
# Flip horizontally
regression_flipped[..., 0] = x_c * 2 - regression_flipped[..., 0]
return regression_flipped, regression_score_flipped
def nets():
return nn.Sequential(nn.Linear(2, 64), nn.LeakyReLU(), nn.Linear(64, 64), nn.LeakyReLU(), nn.Linear(64, 2), nn.Tanh())
def nets3d():
return nn.Sequential(nn.Linear(3, 64), nn.LeakyReLU(), nn.Linear(64, 64), nn.LeakyReLU(), nn.Linear(64, 3), nn.Tanh())
# return nn.Sequential(nn.Linear(3, 256), nn.LeakyReLU(), nn.Linear(256, 2), nn.Tanh())
def nett():
return nn.Sequential(nn.Linear(2, 64), nn.LeakyReLU(), nn.Linear(64, 64), nn.LeakyReLU(), nn.Linear(64, 2))
def nett3d():
return nn.Sequential(nn.Linear(3, 64), nn.LeakyReLU(), nn.Linear(64, 64), nn.LeakyReLU(), nn.Linear(64, 3))
# return nn.Sequential(nn.Linear(3, 256), nn.LeakyReLU(), nn.Linear(256, 2))
class Linear(nn.Module):
def __init__(self, in_channel, out_channel, bias=True, norm=True):
super(Linear, self).__init__()
self.bias = bias
self.norm = norm
self.linear = nn.Linear(in_channel, out_channel, bias)
nn.init.xavier_uniform_(self.linear.weight, gain=0.01)
def forward(self, x):
y = x.matmul(self.linear.weight.t())
if self.norm:
x_norm = torch.norm(x, dim=1, keepdim=True)
y = y / x_norm
if self.bias:
y = y + self.linear.bias
return y
class RealNVP(nn.Module):
def __init__(self, nets, nett, mask, prior):
super(RealNVP, self).__init__()
self.prior = prior
self.register_buffer('mask', mask)
self.t = torch.nn.ModuleList([nett() for _ in range(len(mask))])
self.s = torch.nn.ModuleList([nets() for _ in range(len(mask))])
def _init(self):
for m in self.t:
for mm in m.modules():
if isinstance(mm, nn.Linear):
nn.init.xavier_uniform_(mm.weight, gain=0.01)
for m in self.s:
for mm in m.modules():
if isinstance(mm, nn.Linear):
nn.init.xavier_uniform_(mm.weight, gain=0.01)
def forward_p(self, z):
x = z
for i in range(len(self.t)):
x_ = x * self.mask[i]
s = self.s[i](x_) * (1 - self.mask[i])
t = self.t[i](x_) * (1 - self.mask[i])
x = x_ + (1 - self.mask[i]) * (x * torch.exp(s) + t)
return x
def backward_p(self, x):
log_det_J, z = x.new_zeros(x.shape[0]), x
for i in reversed(range(len(self.t))):
z_ = self.mask[i] * z
s = self.s[i](z_) * (1 - self.mask[i])
t = self.t[i](z_) * (1 - self.mask[i])
z = (1 - self.mask[i]) * (z - t) * torch.exp(-s) + z_
log_det_J -= s.sum(dim=1)
return z, log_det_J
def log_prob(self, x):
DEVICE = x.device
if self.prior.loc.device != DEVICE:
self.prior.loc = self.prior.loc.to(DEVICE)
self.prior.scale_tril = self.prior.scale_tril.to(DEVICE)
self.prior._unbroadcasted_scale_tril = self.prior._unbroadcasted_scale_tril.to(DEVICE)
self.prior.covariance_matrix = self.prior.covariance_matrix.to(DEVICE)
self.prior.precision_matrix = self.prior.precision_matrix.to(DEVICE)
z, logp = self.backward_p(x)
return self.prior.log_prob(z) + logp
def sample(self, batchSize):
z = self.prior.sample((batchSize, 1))
x = self.forward_p(z)
return x
def forward(self, x):
return self.log_prob(x)
@HEADS.register_module()
class RLERegressionHead(nn.Module):
"""Deeppose regression head with fully connected layers.
paper ref: Alexander Toshev and Christian Szegedy,
``DeepPose: Human Pose Estimation via Deep Neural Networks.''.
Args:
in_channels (int): Number of input channels
num_joints (int): Number of joints
loss_keypoint (dict): Config for keypoint loss. Default: None.
"""
def __init__(self,
in_channels,
num_joints,
loss_keypoint=None,
train_cfg=None,
test_cfg=None):
super().__init__()
self.in_channels = in_channels
self.num_joints = num_joints
self.loss = build_loss(loss_keypoint)
self.train_cfg = {} if train_cfg is None else train_cfg
self.test_cfg = {} if test_cfg is None else test_cfg
# self.fc = nn.Linear(self.in_channels, self.num_joints * 2)
# self.avg_pool = nn.AdaptiveAvgPool2d(1)
# self.fcs, out_channel = self._make_fc_layer()
# self.fc_coord = Linear(self.in_channels, self.num_joints * 2)
# self.fc_sigma = Linear(self.in_channels, self.num_joints * 2, norm=False)
self.fc_coord = Linear(self.in_channels, self.num_joints * 3)
self.fc_sigma = Linear(self.in_channels, self.num_joints * 3, norm=False)
self.fc_layers = [self.fc_coord, self.fc_sigma]
self.share_flow = True
prior = distributions.MultivariateNormal(torch.zeros(2), torch.eye(2))
masks = torch.from_numpy(np.array([[0, 1], [1, 0]] * 3).astype(np.float32))
prior3d = distributions.MultivariateNormal(torch.zeros(3), torch.eye(3))
masks3d = torch.from_numpy(np.array([[0, 0, 1], [1, 1, 0]] * 3).astype(np.float32))
self.flow2d = RealNVP(nets, nett, masks, prior)
self.flow3d = RealNVP(nets3d, nett3d, masks3d, prior3d)
# def _make_fc_layer(self):
# fc_layers = []
# num_deconv = len(self.fc_dim)
# input_channel = self.feature_channel
# for i in range(num_deconv):
# if self.fc_dim[i] > 0:
# fc = nn.Linear(input_channel, self.fc_dim[i])
# bn = nn.BatchNorm1d(self.fc_dim[i])
# fc_layers.append(fc)
# fc_layers.append(bn)
# fc_layers.append(nn.ReLU(inplace=True))
# input_channel = self.fc_dim[i]
# else:
# fc_layers.append(nn.Identity())
#
# return nn.Sequential(*fc_layers), input_channel
def forward(self, x):
"""Forward function."""
# output = self.fc(x)
# N, C = output.shape
# return output.reshape([N, C // 2, 2])
BATCH_SIZE = x.shape[0]
out_coord = self.fc_coord(x).reshape(BATCH_SIZE, self.num_joints, 3)
assert out_coord.shape[2] == 3
out_sigma = self.fc_sigma(x).reshape(BATCH_SIZE, self.num_joints, -1)
# (B, N, 3)
pred_jts = out_coord.reshape(BATCH_SIZE, self.num_joints, 3)
sigma = out_sigma.reshape(BATCH_SIZE, self.num_joints, -1).sigmoid() + 1e-9
scores = 1 - sigma
# (B, N, 1)
scores = torch.mean(scores, dim=2, keepdim=True)
output = EasyDict(
pred_jts=pred_jts,
sigma=sigma,
maxvals=scores.float(),
)
return output
def get_loss(self, output, target, target_weight):
"""Calculate top-down keypoint loss.
Note:
batch_size: N
num_keypoints: K
Args:
output (torch.Tensor[N, K, 2]): Output keypoints.
target (torch.Tensor[N, K, 2]): Target keypoints.
target_weight (torch.Tensor[N, K, 2]):
Weights across different joint types.
"""
losses = dict()
assert not isinstance(self.loss, nn.Sequential)
assert target.dim() == 3 and target_weight.dim() == 3
BATCH_SIZE = output.sigma.size(0)
gt_uvd = target.reshape(output.pred_jts.shape)
bar_mu = (output.pred_jts - gt_uvd) / output.sigma
# (B, K, 1)
log_phi = self.flow.log_prob(bar_mu.reshape(-1, 2)).reshape(BATCH_SIZE, self.num_joints, 1)
output.nf_loss = torch.log(output.sigma) - log_phi
losses['reg_loss'] = self.loss(output, target, target_weight)
return losses
def get_accuracy(self, output, target, target_weight):
"""Calculate accuracy for top-down keypoint loss.
Note:
batch_size: N
num_keypoints: K
Args:
output (torch.Tensor[N, K, 2]): Output keypoints.
target (torch.Tensor[N, K, 2]): Target keypoints.
target_weight (torch.Tensor[N, K, 2]):
Weights across different joint types.
"""
accuracy = dict()
N = output.pred_jts.shape[0]
_, avg_acc, cnt = keypoint_pck_accuracy(
output.pred_jts.detach().cpu().numpy(),
target.detach().cpu().numpy(),
target_weight[:, :, 0].detach().cpu().numpy() > 0,
thr=0.05,
normalize=np.ones((N, 2), dtype=np.float32))
accuracy['acc_pose'] = avg_acc
return accuracy
def inference_model(self, x, flip_pairs=None):
"""Inference function.
Returns:
output_regression (np.ndarray): Output regression.
Args:
x (torch.Tensor[N, K, 2]): Input features.
flip_pairs (None | list[tuple()):
Pairs of keypoints which are mirrored.
"""
output = self.forward(x)
if flip_pairs is not None:
output_regression, output_regression_score = rle_fliplr_regression(
output.pred_jts.detach().cpu().numpy(), output.maxvals.detach().cpu().numpy(), flip_pairs, center_x=0.0)
else:
output_regression = output.pred_jts.detach().cpu().numpy()
output_regression_score = output.maxvals.detach().cpu().numpy()
output_regression += 0.5
# output = EasyDict(
# preds=output_regression,
# maxvals=output_regression_score,
# )
return output_regression
def decode(self, img_metas, output, pixel_std=200.0, **kwargs):
"""Decode the keypoints from output regression.
Args:
img_metas (list(dict)): Information about data augmentation
By default this includes:
- "image_file: path to the image file
- "center": center of the bbox
- "scale": scale of the bbox
- "rotation": rotation of the bbox
- "bbox_score": score of bbox
output (np.ndarray[N, K, 2]): predicted regression vector.
kwargs: dict contains 'img_size'.
img_size (tuple(img_width, img_height)): input image size.
"""
batch_size = len(img_metas)
if 'bbox_id' in img_metas[0]:
bbox_ids = []
else:
bbox_ids = None
c = np.zeros((batch_size, 2), dtype=np.float32)
s = np.zeros((batch_size, 2), dtype=np.float32)
image_paths = []
score = np.ones(batch_size)
for i in range(batch_size):
c[i, :] = img_metas[i]['center']
s[i, :] = img_metas[i]['scale']
image_paths.append(img_metas[i]['image_file'])
if 'bbox_score' in img_metas[i]:
score[i] = np.array(img_metas[i]['bbox_score']).reshape(-1)
if bbox_ids is not None:
bbox_ids.append(img_metas[i]['bbox_id'])
preds, maxvals = keypoints_from_regression(output, c, s, kwargs['img_size'], pixel_std)
# maxvals = output.maxvals
all_preds = np.zeros((batch_size, preds.shape[1], 3), dtype=np.float32)
all_boxes = np.zeros((batch_size, 6), dtype=np.float32)
all_preds[:, :, 0:2] = preds[:, :, 0:2]
all_preds[:, :, 2:3] = maxvals
all_boxes[:, 0:2] = c[:, 0:2]
all_boxes[:, 2:4] = s[:, 0:2]
all_boxes[:, 4] = np.prod(s * pixel_std, axis=1)
all_boxes[:, 5] = score
result = {}
result['preds'] = all_preds
result['boxes'] = all_boxes
result['image_paths'] = image_paths
result['bbox_ids'] = bbox_ids
return result
def init_weights(self):
for m in self.fc_layers:
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight, gain=0.01)
# for m in self.flow.t:
# for mm in m.modules():
# if isinstance(mm, nn.Linear):
# nn.init.xavier_uniform_(mm.weight, gain=0.01)
# for m in self.flow.s:
# for mm in m.modules():
# if isinstance(mm, nn.Linear):
# nn.init.xavier_uniform_(mm.weight, gain=0.01)
# normal_init(self.fc, mean=0, std=0.01, bias=0)
|