File size: 29,872 Bytes
2cd560a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 |
# Copyright (c) OpenMMLab. All rights reserved.
import math
import torch
import torch.nn as nn
# from timm.models.layers import to_2tuple, trunc_normal_
from mmcv.cnn import (build_activation_layer, build_conv_layer,
build_norm_layer, trunc_normal_init)
from mmcv.cnn.bricks.transformer import build_dropout
from mmcv.runner import BaseModule
from torch.nn.functional import pad
from ..builder import BACKBONES
from .hrnet import Bottleneck, HRModule, HRNet
def nlc_to_nchw(x, hw_shape):
"""Convert [N, L, C] shape tensor to [N, C, H, W] shape tensor.
Args:
x (Tensor): The input tensor of shape [N, L, C] before conversion.
hw_shape (Sequence[int]): The height and width of output feature map.
Returns:
Tensor: The output tensor of shape [N, C, H, W] after conversion.
"""
H, W = hw_shape
assert len(x.shape) == 3
B, L, C = x.shape
assert L == H * W, 'The seq_len doesn\'t match H, W'
return x.transpose(1, 2).reshape(B, C, H, W)
def nchw_to_nlc(x):
"""Flatten [N, C, H, W] shape tensor to [N, L, C] shape tensor.
Args:
x (Tensor): The input tensor of shape [N, C, H, W] before conversion.
Returns:
Tensor: The output tensor of shape [N, L, C] after conversion.
"""
assert len(x.shape) == 4
return x.flatten(2).transpose(1, 2).contiguous()
def build_drop_path(drop_path_rate):
"""Build drop path layer."""
return build_dropout(dict(type='DropPath', drop_prob=drop_path_rate))
class WindowMSA(BaseModule):
"""Window based multi-head self-attention (W-MSA) module with relative
position bias.
Args:
embed_dims (int): Number of input channels.
num_heads (int): Number of attention heads.
window_size (tuple[int]): The height and width of the window.
qkv_bias (bool, optional): If True, add a learnable bias to q, k, v.
Default: True.
qk_scale (float | None, optional): Override default qk scale of
head_dim ** -0.5 if set. Default: None.
attn_drop_rate (float, optional): Dropout ratio of attention weight.
Default: 0.0
proj_drop_rate (float, optional): Dropout ratio of output. Default: 0.
with_rpe (bool, optional): If True, use relative position bias.
Default: True.
init_cfg (dict | None, optional): The Config for initialization.
Default: None.
"""
def __init__(self,
embed_dims,
num_heads,
window_size,
qkv_bias=True,
qk_scale=None,
attn_drop_rate=0.,
proj_drop_rate=0.,
with_rpe=True,
init_cfg=None):
super().__init__(init_cfg=init_cfg)
self.embed_dims = embed_dims
self.window_size = window_size # Wh, Ww
self.num_heads = num_heads
head_embed_dims = embed_dims // num_heads
self.scale = qk_scale or head_embed_dims**-0.5
self.with_rpe = with_rpe
if self.with_rpe:
# define a parameter table of relative position bias
self.relative_position_bias_table = nn.Parameter(
torch.zeros(
(2 * window_size[0] - 1) * (2 * window_size[1] - 1),
num_heads)) # 2*Wh-1 * 2*Ww-1, nH
Wh, Ww = self.window_size
rel_index_coords = self.double_step_seq(2 * Ww - 1, Wh, 1, Ww)
rel_position_index = rel_index_coords + rel_index_coords.T
rel_position_index = rel_position_index.flip(1).contiguous()
self.register_buffer('relative_position_index', rel_position_index)
self.qkv = nn.Linear(embed_dims, embed_dims * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop_rate)
self.proj = nn.Linear(embed_dims, embed_dims)
self.proj_drop = nn.Dropout(proj_drop_rate)
self.softmax = nn.Softmax(dim=-1)
def init_weights(self):
trunc_normal_init(self.relative_position_bias_table, std=0.02)
def forward(self, x, mask=None):
"""
Args:
x (tensor): input features with shape of (B*num_windows, N, C)
mask (tensor | None, Optional): mask with shape of (num_windows,
Wh*Ww, Wh*Ww), value should be between (-inf, 0].
"""
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads,
C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2]
q = q * self.scale
attn = (q @ k.transpose(-2, -1))
if self.with_rpe:
relative_position_bias = self.relative_position_bias_table[
self.relative_position_index.view(-1)].view(
self.window_size[0] * self.window_size[1],
self.window_size[0] * self.window_size[1],
-1) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(
2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
attn = attn + relative_position_bias.unsqueeze(0)
if mask is not None:
nW = mask.shape[0]
attn = attn.view(B // nW, nW, self.num_heads, N,
N) + mask.unsqueeze(1).unsqueeze(0)
attn = attn.view(-1, self.num_heads, N, N)
attn = self.softmax(attn)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
@staticmethod
def double_step_seq(step1, len1, step2, len2):
seq1 = torch.arange(0, step1 * len1, step1)
seq2 = torch.arange(0, step2 * len2, step2)
return (seq1[:, None] + seq2[None, :]).reshape(1, -1)
class LocalWindowSelfAttention(BaseModule):
r""" Local-window Self Attention (LSA) module with relative position bias.
This module is the short-range self-attention module in the
Interlaced Sparse Self-Attention <https://arxiv.org/abs/1907.12273>`_.
Args:
embed_dims (int): Number of input channels.
num_heads (int): Number of attention heads.
window_size (tuple[int] | int): The height and width of the window.
qkv_bias (bool, optional): If True, add a learnable bias to q, k, v.
Default: True.
qk_scale (float | None, optional): Override default qk scale of
head_dim ** -0.5 if set. Default: None.
attn_drop_rate (float, optional): Dropout ratio of attention weight.
Default: 0.0
proj_drop_rate (float, optional): Dropout ratio of output. Default: 0.
with_rpe (bool, optional): If True, use relative position bias.
Default: True.
with_pad_mask (bool, optional): If True, mask out the padded tokens in
the attention process. Default: False.
init_cfg (dict | None, optional): The Config for initialization.
Default: None.
"""
def __init__(self,
embed_dims,
num_heads,
window_size,
qkv_bias=True,
qk_scale=None,
attn_drop_rate=0.,
proj_drop_rate=0.,
with_rpe=True,
with_pad_mask=False,
init_cfg=None):
super().__init__(init_cfg=init_cfg)
if isinstance(window_size, int):
window_size = (window_size, window_size)
self.window_size = window_size
self.with_pad_mask = with_pad_mask
self.attn = WindowMSA(
embed_dims=embed_dims,
num_heads=num_heads,
window_size=window_size,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop_rate=attn_drop_rate,
proj_drop_rate=proj_drop_rate,
with_rpe=with_rpe,
init_cfg=init_cfg)
def forward(self, x, H, W, **kwargs):
"""Forward function."""
B, N, C = x.shape
x = x.view(B, H, W, C)
Wh, Ww = self.window_size
# center-pad the feature on H and W axes
pad_h = math.ceil(H / Wh) * Wh - H
pad_w = math.ceil(W / Ww) * Ww - W
x = pad(x, (0, 0, pad_w // 2, pad_w - pad_w // 2, pad_h // 2,
pad_h - pad_h // 2))
# permute
x = x.view(B, math.ceil(H / Wh), Wh, math.ceil(W / Ww), Ww, C)
x = x.permute(0, 1, 3, 2, 4, 5)
x = x.reshape(-1, Wh * Ww, C) # (B*num_window, Wh*Ww, C)
# attention
if self.with_pad_mask and pad_h > 0 and pad_w > 0:
pad_mask = x.new_zeros(1, H, W, 1)
pad_mask = pad(
pad_mask, [
0, 0, pad_w // 2, pad_w - pad_w // 2, pad_h // 2,
pad_h - pad_h // 2
],
value=-float('inf'))
pad_mask = pad_mask.view(1, math.ceil(H / Wh), Wh,
math.ceil(W / Ww), Ww, 1)
pad_mask = pad_mask.permute(1, 3, 0, 2, 4, 5)
pad_mask = pad_mask.reshape(-1, Wh * Ww)
pad_mask = pad_mask[:, None, :].expand([-1, Wh * Ww, -1])
out = self.attn(x, pad_mask, **kwargs)
else:
out = self.attn(x, **kwargs)
# reverse permutation
out = out.reshape(B, math.ceil(H / Wh), math.ceil(W / Ww), Wh, Ww, C)
out = out.permute(0, 1, 3, 2, 4, 5)
out = out.reshape(B, H + pad_h, W + pad_w, C)
# de-pad
out = out[:, pad_h // 2:H + pad_h // 2, pad_w // 2:W + pad_w // 2]
return out.reshape(B, N, C)
class CrossFFN(BaseModule):
r"""FFN with Depthwise Conv of HRFormer.
Args:
in_features (int): The feature dimension.
hidden_features (int, optional): The hidden dimension of FFNs.
Defaults: The same as in_features.
act_cfg (dict, optional): Config of activation layer.
Default: dict(type='GELU').
dw_act_cfg (dict, optional): Config of activation layer appended
right after DW Conv. Default: dict(type='GELU').
norm_cfg (dict, optional): Config of norm layer.
Default: dict(type='SyncBN').
init_cfg (dict | list | None, optional): The init config.
Default: None.
"""
def __init__(self,
in_features,
hidden_features=None,
out_features=None,
act_cfg=dict(type='GELU'),
dw_act_cfg=dict(type='GELU'),
norm_cfg=dict(type='SyncBN'),
init_cfg=None):
super().__init__(init_cfg=init_cfg)
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Conv2d(in_features, hidden_features, kernel_size=1)
self.act1 = build_activation_layer(act_cfg)
self.norm1 = build_norm_layer(norm_cfg, hidden_features)[1]
self.dw3x3 = nn.Conv2d(
hidden_features,
hidden_features,
kernel_size=3,
stride=1,
groups=hidden_features,
padding=1)
self.act2 = build_activation_layer(dw_act_cfg)
self.norm2 = build_norm_layer(norm_cfg, hidden_features)[1]
self.fc2 = nn.Conv2d(hidden_features, out_features, kernel_size=1)
self.act3 = build_activation_layer(act_cfg)
self.norm3 = build_norm_layer(norm_cfg, out_features)[1]
# put the modules togather
self.layers = [
self.fc1, self.norm1, self.act1, self.dw3x3, self.norm2, self.act2,
self.fc2, self.norm3, self.act3
]
def forward(self, x, H, W):
"""Forward function."""
x = nlc_to_nchw(x, (H, W))
for layer in self.layers:
x = layer(x)
x = nchw_to_nlc(x)
return x
class HRFormerBlock(BaseModule):
"""High-Resolution Block for HRFormer.
Args:
in_features (int): The input dimension.
out_features (int): The output dimension.
num_heads (int): The number of head within each LSA.
window_size (int, optional): The window size for the LSA.
Default: 7
mlp_ratio (int, optional): The expansion ration of FFN.
Default: 4
act_cfg (dict, optional): Config of activation layer.
Default: dict(type='GELU').
norm_cfg (dict, optional): Config of norm layer.
Default: dict(type='SyncBN').
transformer_norm_cfg (dict, optional): Config of transformer norm
layer. Default: dict(type='LN', eps=1e-6).
init_cfg (dict | list | None, optional): The init config.
Default: None.
"""
expansion = 1
def __init__(self,
in_features,
out_features,
num_heads,
window_size=7,
mlp_ratio=4.0,
drop_path=0.0,
act_cfg=dict(type='GELU'),
norm_cfg=dict(type='SyncBN'),
transformer_norm_cfg=dict(type='LN', eps=1e-6),
init_cfg=None,
**kwargs):
super(HRFormerBlock, self).__init__(init_cfg=init_cfg)
self.num_heads = num_heads
self.window_size = window_size
self.mlp_ratio = mlp_ratio
self.norm1 = build_norm_layer(transformer_norm_cfg, in_features)[1]
self.attn = LocalWindowSelfAttention(
in_features,
num_heads=num_heads,
window_size=window_size,
init_cfg=None,
**kwargs)
self.norm2 = build_norm_layer(transformer_norm_cfg, out_features)[1]
self.ffn = CrossFFN(
in_features=in_features,
hidden_features=int(in_features * mlp_ratio),
out_features=out_features,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
dw_act_cfg=act_cfg,
init_cfg=None)
self.drop_path = build_drop_path(
drop_path) if drop_path > 0.0 else nn.Identity()
def forward(self, x):
"""Forward function."""
B, C, H, W = x.size()
# Attention
x = x.view(B, C, -1).permute(0, 2, 1)
x = x + self.drop_path(self.attn(self.norm1(x), H, W))
# FFN
x = x + self.drop_path(self.ffn(self.norm2(x), H, W))
x = x.permute(0, 2, 1).view(B, C, H, W)
return x
def extra_repr(self):
"""(Optional) Set the extra information about this module."""
return 'num_heads={}, window_size={}, mlp_ratio={}'.format(
self.num_heads, self.window_size, self.mlp_ratio)
class HRFomerModule(HRModule):
"""High-Resolution Module for HRFormer.
Args:
num_branches (int): The number of branches in the HRFormerModule.
block (nn.Module): The building block of HRFormer.
The block should be the HRFormerBlock.
num_blocks (tuple): The number of blocks in each branch.
The length must be equal to num_branches.
num_inchannels (tuple): The number of input channels in each branch.
The length must be equal to num_branches.
num_channels (tuple): The number of channels in each branch.
The length must be equal to num_branches.
num_heads (tuple): The number of heads within the LSAs.
num_window_sizes (tuple): The window size for the LSAs.
num_mlp_ratios (tuple): The expansion ratio for the FFNs.
drop_path (int, optional): The drop path rate of HRFomer.
Default: 0.0
multiscale_output (bool, optional): Whether to output multi-level
features produced by multiple branches. If False, only the first
level feature will be output. Default: True.
conv_cfg (dict, optional): Config of the conv layers.
Default: None.
norm_cfg (dict, optional): Config of the norm layers appended
right after conv. Default: dict(type='SyncBN', requires_grad=True)
transformer_norm_cfg (dict, optional): Config of the norm layers.
Default: dict(type='LN', eps=1e-6)
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Default: False
upsample_cfg(dict, optional): The config of upsample layers in fuse
layers. Default: dict(mode='bilinear', align_corners=False)
"""
def __init__(self,
num_branches,
block,
num_blocks,
num_inchannels,
num_channels,
num_heads,
num_window_sizes,
num_mlp_ratios,
multiscale_output=True,
drop_paths=0.0,
with_rpe=True,
with_pad_mask=False,
conv_cfg=None,
norm_cfg=dict(type='SyncBN', requires_grad=True),
transformer_norm_cfg=dict(type='LN', eps=1e-6),
with_cp=False,
upsample_cfg=dict(mode='bilinear', align_corners=False)):
self.transformer_norm_cfg = transformer_norm_cfg
self.drop_paths = drop_paths
self.num_heads = num_heads
self.num_window_sizes = num_window_sizes
self.num_mlp_ratios = num_mlp_ratios
self.with_rpe = with_rpe
self.with_pad_mask = with_pad_mask
super().__init__(num_branches, block, num_blocks, num_inchannels,
num_channels, multiscale_output, with_cp, conv_cfg,
norm_cfg, upsample_cfg)
def _make_one_branch(self,
branch_index,
block,
num_blocks,
num_channels,
stride=1):
"""Build one branch."""
# HRFormerBlock does not support down sample layer yet.
assert stride == 1 and self.in_channels[branch_index] == num_channels[
branch_index]
layers = []
layers.append(
block(
self.in_channels[branch_index],
num_channels[branch_index],
num_heads=self.num_heads[branch_index],
window_size=self.num_window_sizes[branch_index],
mlp_ratio=self.num_mlp_ratios[branch_index],
drop_path=self.drop_paths[0],
norm_cfg=self.norm_cfg,
transformer_norm_cfg=self.transformer_norm_cfg,
init_cfg=None,
with_rpe=self.with_rpe,
with_pad_mask=self.with_pad_mask))
self.in_channels[
branch_index] = self.in_channels[branch_index] * block.expansion
for i in range(1, num_blocks[branch_index]):
layers.append(
block(
self.in_channels[branch_index],
num_channels[branch_index],
num_heads=self.num_heads[branch_index],
window_size=self.num_window_sizes[branch_index],
mlp_ratio=self.num_mlp_ratios[branch_index],
drop_path=self.drop_paths[i],
norm_cfg=self.norm_cfg,
transformer_norm_cfg=self.transformer_norm_cfg,
init_cfg=None,
with_rpe=self.with_rpe,
with_pad_mask=self.with_pad_mask))
return nn.Sequential(*layers)
def _make_fuse_layers(self):
"""Build fuse layers."""
if self.num_branches == 1:
return None
num_branches = self.num_branches
num_inchannels = self.in_channels
fuse_layers = []
for i in range(num_branches if self.multiscale_output else 1):
fuse_layer = []
for j in range(num_branches):
if j > i:
fuse_layer.append(
nn.Sequential(
build_conv_layer(
self.conv_cfg,
num_inchannels[j],
num_inchannels[i],
kernel_size=1,
stride=1,
bias=False),
build_norm_layer(self.norm_cfg,
num_inchannels[i])[1],
nn.Upsample(
scale_factor=2**(j - i),
mode=self.upsample_cfg['mode'],
align_corners=self.
upsample_cfg['align_corners'])))
elif j == i:
fuse_layer.append(None)
else:
conv3x3s = []
for k in range(i - j):
if k == i - j - 1:
num_outchannels_conv3x3 = num_inchannels[i]
with_out_act = False
else:
num_outchannels_conv3x3 = num_inchannels[j]
with_out_act = True
sub_modules = [
build_conv_layer(
self.conv_cfg,
num_inchannels[j],
num_inchannels[j],
kernel_size=3,
stride=2,
padding=1,
groups=num_inchannels[j],
bias=False,
),
build_norm_layer(self.norm_cfg,
num_inchannels[j])[1],
build_conv_layer(
self.conv_cfg,
num_inchannels[j],
num_outchannels_conv3x3,
kernel_size=1,
stride=1,
bias=False,
),
build_norm_layer(self.norm_cfg,
num_outchannels_conv3x3)[1]
]
if with_out_act:
sub_modules.append(nn.ReLU(False))
conv3x3s.append(nn.Sequential(*sub_modules))
fuse_layer.append(nn.Sequential(*conv3x3s))
fuse_layers.append(nn.ModuleList(fuse_layer))
return nn.ModuleList(fuse_layers)
def get_num_inchannels(self):
"""Return the number of input channels."""
return self.in_channels
@BACKBONES.register_module()
class HRFormer(HRNet):
"""HRFormer backbone.
This backbone is the implementation of `HRFormer: High-Resolution
Transformer for Dense Prediction <https://arxiv.org/abs/2110.09408>`_.
Args:
extra (dict): Detailed configuration for each stage of HRNet.
There must be 4 stages, the configuration for each stage must have
5 keys:
- num_modules (int): The number of HRModule in this stage.
- num_branches (int): The number of branches in the HRModule.
- block (str): The type of block.
- num_blocks (tuple): The number of blocks in each branch.
The length must be equal to num_branches.
- num_channels (tuple): The number of channels in each branch.
The length must be equal to num_branches.
in_channels (int): Number of input image channels. Normally 3.
conv_cfg (dict): Dictionary to construct and config conv layer.
Default: None.
norm_cfg (dict): Config of norm layer.
Use `SyncBN` by default.
transformer_norm_cfg (dict): Config of transformer norm layer.
Use `LN` by default.
norm_eval (bool): Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only. Default: False.
zero_init_residual (bool): Whether to use zero init for last norm layer
in resblocks to let them behave as identity. Default: False.
frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
-1 means not freezing any parameters. Default: -1.
Example:
>>> from mmpose.models import HRFormer
>>> import torch
>>> extra = dict(
>>> stage1=dict(
>>> num_modules=1,
>>> num_branches=1,
>>> block='BOTTLENECK',
>>> num_blocks=(2, ),
>>> num_channels=(64, )),
>>> stage2=dict(
>>> num_modules=1,
>>> num_branches=2,
>>> block='HRFORMER',
>>> window_sizes=(7, 7),
>>> num_heads=(1, 2),
>>> mlp_ratios=(4, 4),
>>> num_blocks=(2, 2),
>>> num_channels=(32, 64)),
>>> stage3=dict(
>>> num_modules=4,
>>> num_branches=3,
>>> block='HRFORMER',
>>> window_sizes=(7, 7, 7),
>>> num_heads=(1, 2, 4),
>>> mlp_ratios=(4, 4, 4),
>>> num_blocks=(2, 2, 2),
>>> num_channels=(32, 64, 128)),
>>> stage4=dict(
>>> num_modules=2,
>>> num_branches=4,
>>> block='HRFORMER',
>>> window_sizes=(7, 7, 7, 7),
>>> num_heads=(1, 2, 4, 8),
>>> mlp_ratios=(4, 4, 4, 4),
>>> num_blocks=(2, 2, 2, 2),
>>> num_channels=(32, 64, 128, 256)))
>>> self = HRFormer(extra, in_channels=1)
>>> self.eval()
>>> inputs = torch.rand(1, 1, 32, 32)
>>> level_outputs = self.forward(inputs)
>>> for level_out in level_outputs:
... print(tuple(level_out.shape))
(1, 32, 8, 8)
(1, 64, 4, 4)
(1, 128, 2, 2)
(1, 256, 1, 1)
"""
blocks_dict = {'BOTTLENECK': Bottleneck, 'HRFORMERBLOCK': HRFormerBlock}
def __init__(self,
extra,
in_channels=3,
conv_cfg=None,
norm_cfg=dict(type='BN', requires_grad=True),
transformer_norm_cfg=dict(type='LN', eps=1e-6),
norm_eval=False,
with_cp=False,
zero_init_residual=False,
frozen_stages=-1):
# stochastic depth
depths = [
extra[stage]['num_blocks'][0] * extra[stage]['num_modules']
for stage in ['stage2', 'stage3', 'stage4']
]
depth_s2, depth_s3, _ = depths
drop_path_rate = extra['drop_path_rate']
dpr = [
x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))
]
extra['stage2']['drop_path_rates'] = dpr[0:depth_s2]
extra['stage3']['drop_path_rates'] = dpr[depth_s2:depth_s2 + depth_s3]
extra['stage4']['drop_path_rates'] = dpr[depth_s2 + depth_s3:]
# HRFormer use bilinear upsample as default
upsample_cfg = extra.get('upsample', {
'mode': 'bilinear',
'align_corners': False
})
extra['upsample'] = upsample_cfg
self.transformer_norm_cfg = transformer_norm_cfg
self.with_rpe = extra.get('with_rpe', True)
self.with_pad_mask = extra.get('with_pad_mask', False)
super().__init__(extra, in_channels, conv_cfg, norm_cfg, norm_eval,
with_cp, zero_init_residual, frozen_stages)
def _make_stage(self,
layer_config,
num_inchannels,
multiscale_output=True):
"""Make each stage."""
num_modules = layer_config['num_modules']
num_branches = layer_config['num_branches']
num_blocks = layer_config['num_blocks']
num_channels = layer_config['num_channels']
block = self.blocks_dict[layer_config['block']]
num_heads = layer_config['num_heads']
num_window_sizes = layer_config['window_sizes']
num_mlp_ratios = layer_config['mlp_ratios']
drop_path_rates = layer_config['drop_path_rates']
modules = []
for i in range(num_modules):
# multiscale_output is only used at the last module
if not multiscale_output and i == num_modules - 1:
reset_multiscale_output = False
else:
reset_multiscale_output = True
modules.append(
HRFomerModule(
num_branches,
block,
num_blocks,
num_inchannels,
num_channels,
num_heads,
num_window_sizes,
num_mlp_ratios,
reset_multiscale_output,
drop_paths=drop_path_rates[num_blocks[0] *
i:num_blocks[0] * (i + 1)],
with_rpe=self.with_rpe,
with_pad_mask=self.with_pad_mask,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
transformer_norm_cfg=self.transformer_norm_cfg,
with_cp=self.with_cp,
upsample_cfg=self.upsample_cfg))
num_inchannels = modules[-1].get_num_inchannels()
return nn.Sequential(*modules), num_inchannels
|