File size: 3,642 Bytes
2cd560a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import torch
import torch.nn as nn
import torch.nn.functional as F

from typing import Type


class MLPBlock(nn.Module):
    def __init__(
        self,
        embedding_dim: int,
        mlp_dim: int,
        act: Type[nn.Module] = nn.GELU,
    ) -> None:
        super().__init__()
        self.lin1 = nn.Linear(embedding_dim, mlp_dim)
        self.lin2 = nn.Linear(mlp_dim, embedding_dim)
        self.act = act()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return self.lin2(self.act(self.lin1(x)))


# From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa
# Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119  # noqa
class LayerNorm2d(nn.Module):
    def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
        super().__init__()
        self.weight = nn.Parameter(torch.ones(num_channels))
        self.bias = nn.Parameter(torch.zeros(num_channels))
        self.eps = eps

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        u = x.mean(1, keepdim=True)
        s = (x - u).pow(2).mean(1, keepdim=True)
        x = (x - u) / torch.sqrt(s + self.eps)
        x = self.weight[:, None, None] * x + self.bias[:, None, None]
        return x


def val2list(x: list or tuple or any, repeat_time=1) -> list:
    if isinstance(x, (list, tuple)):
        return list(x)
    return [x for _ in range(repeat_time)]


def val2tuple(x: list or tuple or any, min_len: int = 1, idx_repeat: int = -1) -> tuple:
    x = val2list(x)

    # repeat elements if necessary
    if len(x) > 0:
        x[idx_repeat:idx_repeat] = [x[idx_repeat] for _ in range(min_len - len(x))]

    return tuple(x)


def list_sum(x: list) -> any:
    return x[0] if len(x) == 1 else x[0] + list_sum(x[1:])


def resize(
        x: torch.Tensor,
        size: any or None = None,
        scale_factor=None,
        mode: str = "bicubic",
        align_corners: bool or None = False,
) -> torch.Tensor:
    if mode in ["bilinear", "bicubic"]:
        return F.interpolate(
            x,
            size=size,
            scale_factor=scale_factor,
            mode=mode,
            align_corners=align_corners,
        )
    elif mode in ["nearest", "area"]:
        return F.interpolate(x, size=size, scale_factor=scale_factor, mode=mode)
    else:
        raise NotImplementedError(f"resize(mode={mode}) not implemented.")


class UpSampleLayer(nn.Module):
    def __init__(
            self,
            mode="bicubic",
            size=None,
            factor=2,
            align_corners=False,
    ):
        super(UpSampleLayer, self).__init__()
        self.mode = mode
        self.size = val2list(size, 2) if size is not None else None
        self.factor = None if self.size is not None else factor
        self.align_corners = align_corners

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return resize(x, self.size, self.factor, self.mode, self.align_corners)


class OpSequential(nn.Module):
    def __init__(self, op_list):
        super(OpSequential, self).__init__()
        valid_op_list = []
        for op in op_list:
            if op is not None:
                valid_op_list.append(op)
        self.op_list = nn.ModuleList(valid_op_list)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        for op in self.op_list:
            x = op(x)
        return x