File size: 25,091 Bytes
2cd560a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 |
# --------------------------------------------------------
# TinyViT Model Architecture
# Copyright (c) 2022 Microsoft
# Adapted from LeViT and Swin Transformer
# LeViT: (https://github.com/facebookresearch/levit)
# Swin: (https://github.com/microsoft/swin-transformer)
# Build the TinyViT Model
# --------------------------------------------------------
import itertools
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from timm.models.layers import DropPath as TimmDropPath,\
to_2tuple, trunc_normal_
from timm.models.registry import register_model
from typing import Tuple
class Conv2d_BN(torch.nn.Sequential):
def __init__(self, a, b, ks=1, stride=1, pad=0, dilation=1,
groups=1, bn_weight_init=1):
super().__init__()
self.add_module('c', torch.nn.Conv2d(
a, b, ks, stride, pad, dilation, groups, bias=False))
bn = torch.nn.BatchNorm2d(b)
torch.nn.init.constant_(bn.weight, bn_weight_init)
torch.nn.init.constant_(bn.bias, 0)
self.add_module('bn', bn)
@torch.no_grad()
def fuse(self):
c, bn = self._modules.values()
w = bn.weight / (bn.running_var + bn.eps)**0.5
w = c.weight * w[:, None, None, None]
b = bn.bias - bn.running_mean * bn.weight / \
(bn.running_var + bn.eps)**0.5
m = torch.nn.Conv2d(w.size(1) * self.c.groups, w.size(
0), w.shape[2:], stride=self.c.stride, padding=self.c.padding, dilation=self.c.dilation, groups=self.c.groups)
m.weight.data.copy_(w)
m.bias.data.copy_(b)
return m
class DropPath(TimmDropPath):
def __init__(self, drop_prob=None):
super().__init__(drop_prob=drop_prob)
self.drop_prob = drop_prob
def __repr__(self):
msg = super().__repr__()
msg += f'(drop_prob={self.drop_prob})'
return msg
class PatchEmbed(nn.Module):
def __init__(self, in_chans, embed_dim, resolution, activation):
super().__init__()
img_size: Tuple[int, int] = to_2tuple(resolution)
self.patches_resolution = (img_size[0] // 4, img_size[1] // 4)
self.num_patches = self.patches_resolution[0] * \
self.patches_resolution[1]
self.in_chans = in_chans
self.embed_dim = embed_dim
n = embed_dim
self.seq = nn.Sequential(
Conv2d_BN(in_chans, n // 2, 3, 2, 1),
activation(),
Conv2d_BN(n // 2, n, 3, 2, 1),
)
def forward(self, x):
return self.seq(x)
class MBConv(nn.Module):
def __init__(self, in_chans, out_chans, expand_ratio,
activation, drop_path):
super().__init__()
self.in_chans = in_chans
self.hidden_chans = int(in_chans * expand_ratio)
self.out_chans = out_chans
self.conv1 = Conv2d_BN(in_chans, self.hidden_chans, ks=1)
self.act1 = activation()
self.conv2 = Conv2d_BN(self.hidden_chans, self.hidden_chans,
ks=3, stride=1, pad=1, groups=self.hidden_chans)
self.act2 = activation()
self.conv3 = Conv2d_BN(
self.hidden_chans, out_chans, ks=1, bn_weight_init=0.0)
self.act3 = activation()
self.drop_path = DropPath(
drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x):
shortcut = x
x = self.conv1(x)
x = self.act1(x)
x = self.conv2(x)
x = self.act2(x)
x = self.conv3(x)
x = self.drop_path(x)
x += shortcut
x = self.act3(x)
return x
class PatchMerging(nn.Module):
def __init__(self, input_resolution, dim, out_dim, activation):
super().__init__()
self.input_resolution = input_resolution
self.dim = dim
self.out_dim = out_dim
self.act = activation()
self.conv1 = Conv2d_BN(dim, out_dim, 1, 1, 0)
stride_c=2
if(out_dim==320 or out_dim==448 or out_dim==576):
stride_c=1
self.conv2 = Conv2d_BN(out_dim, out_dim, 3, stride_c, 1, groups=out_dim)
self.conv3 = Conv2d_BN(out_dim, out_dim, 1, 1, 0)
def forward(self, x):
if x.ndim == 3:
H, W = self.input_resolution
B = len(x)
# (B, C, H, W)
x = x.view(B, H, W, -1).permute(0, 3, 1, 2)
x = self.conv1(x)
x = self.act(x)
x = self.conv2(x)
x = self.act(x)
x = self.conv3(x)
x = x.flatten(2).transpose(1, 2)
return x
class ConvLayer(nn.Module):
def __init__(self, dim, input_resolution, depth,
activation,
drop_path=0., downsample=None, use_checkpoint=False,
out_dim=None,
conv_expand_ratio=4.,
):
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.depth = depth
self.use_checkpoint = use_checkpoint
# build blocks
self.blocks = nn.ModuleList([
MBConv(dim, dim, conv_expand_ratio, activation,
drop_path[i] if isinstance(drop_path, list) else drop_path,
)
for i in range(depth)])
# patch merging layer
if downsample is not None:
self.downsample = downsample(
input_resolution, dim=dim, out_dim=out_dim, activation=activation)
else:
self.downsample = None
def forward(self, x):
for blk in self.blocks:
if self.use_checkpoint:
x = checkpoint.checkpoint(blk, x)
else:
x = blk(x)
if self.downsample is not None:
x = self.downsample(x)
return x
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None,
out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.norm = nn.LayerNorm(in_features)
self.fc1 = nn.Linear(in_features, hidden_features)
self.fc2 = nn.Linear(hidden_features, out_features)
self.act = act_layer()
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.norm(x)
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(torch.nn.Module):
def __init__(self, dim, key_dim, num_heads=8,
attn_ratio=4,
resolution=(14, 14),
):
super().__init__()
# (h, w)
assert isinstance(resolution, tuple) and len(resolution) == 2
self.num_heads = num_heads
self.scale = key_dim ** -0.5
self.key_dim = key_dim
self.nh_kd = nh_kd = key_dim * num_heads
self.d = int(attn_ratio * key_dim)
self.dh = int(attn_ratio * key_dim) * num_heads
self.attn_ratio = attn_ratio
h = self.dh + nh_kd * 2
self.norm = nn.LayerNorm(dim)
self.qkv = nn.Linear(dim, h)
self.proj = nn.Linear(self.dh, dim)
points = list(itertools.product(
range(resolution[0]), range(resolution[1])))
N = len(points)
attention_offsets = {}
idxs = []
for p1 in points:
for p2 in points:
offset = (abs(p1[0] - p2[0]), abs(p1[1] - p2[1]))
if offset not in attention_offsets:
attention_offsets[offset] = len(attention_offsets)
idxs.append(attention_offsets[offset])
self.attention_biases = torch.nn.Parameter(
torch.zeros(num_heads, len(attention_offsets)))
self.register_buffer('attention_bias_idxs',
torch.LongTensor(idxs).view(N, N),
persistent=False)
@torch.no_grad()
def train(self, mode=True):
super().train(mode)
if mode and hasattr(self, 'ab'):
del self.ab
else:
self.register_buffer('ab',
self.attention_biases[:, self.attention_bias_idxs],
persistent=False)
def forward(self, x): # x (B,N,C)
B, N, _ = x.shape
# Normalization
x = self.norm(x)
qkv = self.qkv(x)
# (B, N, num_heads, d)
q, k, v = qkv.view(B, N, self.num_heads, -
1).split([self.key_dim, self.key_dim, self.d], dim=3)
# (B, num_heads, N, d)
q = q.permute(0, 2, 1, 3)
k = k.permute(0, 2, 1, 3)
v = v.permute(0, 2, 1, 3)
attn = (
(q @ k.transpose(-2, -1)) * self.scale
+
(self.attention_biases[:, self.attention_bias_idxs]
if self.training else self.ab)
)
attn = attn.softmax(dim=-1)
x = (attn @ v).transpose(1, 2).reshape(B, N, self.dh)
x = self.proj(x)
return x
class TinyViTBlock(nn.Module):
r""" TinyViT Block.
Args:
dim (int): Number of input channels.
input_resolution (tuple[int, int]): Input resolution.
num_heads (int): Number of attention heads.
window_size (int): Window size.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
drop (float, optional): Dropout rate. Default: 0.0
drop_path (float, optional): Stochastic depth rate. Default: 0.0
local_conv_size (int): the kernel size of the convolution between
Attention and MLP. Default: 3
activation: the activation function. Default: nn.GELU
"""
def __init__(self, dim, input_resolution, num_heads, window_size=7,
mlp_ratio=4., drop=0., drop_path=0.,
local_conv_size=3,
activation=nn.GELU,
):
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.num_heads = num_heads
assert window_size > 0, 'window_size must be greater than 0'
self.window_size = window_size
self.mlp_ratio = mlp_ratio
self.drop_path = DropPath(
drop_path) if drop_path > 0. else nn.Identity()
assert dim % num_heads == 0, 'dim must be divisible by num_heads'
head_dim = dim // num_heads
window_resolution = (window_size, window_size)
self.attn = Attention(dim, head_dim, num_heads,
attn_ratio=1, resolution=window_resolution)
mlp_hidden_dim = int(dim * mlp_ratio)
mlp_activation = activation
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim,
act_layer=mlp_activation, drop=drop)
pad = local_conv_size // 2
self.local_conv = Conv2d_BN(
dim, dim, ks=local_conv_size, stride=1, pad=pad, groups=dim)
def forward(self, x):
H, W = self.input_resolution
B, L, C = x.shape
assert L == H * W, "input feature has wrong size"
res_x = x
if H == self.window_size and W == self.window_size:
x = self.attn(x)
else:
x = x.view(B, H, W, C)
pad_b = (self.window_size - H %
self.window_size) % self.window_size
pad_r = (self.window_size - W %
self.window_size) % self.window_size
padding = pad_b > 0 or pad_r > 0
if padding:
x = F.pad(x, (0, 0, 0, pad_r, 0, pad_b))
pH, pW = H + pad_b, W + pad_r
nH = pH // self.window_size
nW = pW // self.window_size
# window partition
x = x.view(B, nH, self.window_size, nW, self.window_size, C).transpose(2, 3).reshape(
B * nH * nW, self.window_size * self.window_size, C)
x = self.attn(x)
# window reverse
x = x.view(B, nH, nW, self.window_size, self.window_size,
C).transpose(2, 3).reshape(B, pH, pW, C)
if padding:
x = x[:, :H, :W].contiguous()
x = x.view(B, L, C)
x = res_x + self.drop_path(x)
x = x.transpose(1, 2).reshape(B, C, H, W)
x = self.local_conv(x)
x = x.view(B, C, L).transpose(1, 2)
x = x + self.drop_path(self.mlp(x))
return x
def extra_repr(self) -> str:
return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
f"window_size={self.window_size}, mlp_ratio={self.mlp_ratio}"
class BasicLayer(nn.Module):
""" A basic TinyViT layer for one stage.
Args:
dim (int): Number of input channels.
input_resolution (tuple[int]): Input resolution.
depth (int): Number of blocks.
num_heads (int): Number of attention heads.
window_size (int): Local window size.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
drop (float, optional): Dropout rate. Default: 0.0
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
local_conv_size: the kernel size of the depthwise convolution between attention and MLP. Default: 3
activation: the activation function. Default: nn.GELU
out_dim: the output dimension of the layer. Default: dim
"""
def __init__(self, dim, input_resolution, depth, num_heads, window_size,
mlp_ratio=4., drop=0.,
drop_path=0., downsample=None, use_checkpoint=False,
local_conv_size=3,
activation=nn.GELU,
out_dim=None,
):
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.depth = depth
self.use_checkpoint = use_checkpoint
# build blocks
self.blocks = nn.ModuleList([
TinyViTBlock(dim=dim, input_resolution=input_resolution,
num_heads=num_heads, window_size=window_size,
mlp_ratio=mlp_ratio,
drop=drop,
drop_path=drop_path[i] if isinstance(
drop_path, list) else drop_path,
local_conv_size=local_conv_size,
activation=activation,
)
for i in range(depth)])
# patch merging layer
if downsample is not None:
self.downsample = downsample(
input_resolution, dim=dim, out_dim=out_dim, activation=activation)
else:
self.downsample = None
def forward(self, x):
for blk in self.blocks:
if self.use_checkpoint:
x = checkpoint.checkpoint(blk, x)
else:
x = blk(x)
if self.downsample is not None:
x = self.downsample(x)
return x
def extra_repr(self) -> str:
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
class LayerNorm2d(nn.Module):
def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
super().__init__()
self.weight = nn.Parameter(torch.ones(num_channels))
self.bias = nn.Parameter(torch.zeros(num_channels))
self.eps = eps
def forward(self, x: torch.Tensor) -> torch.Tensor:
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
class TinyViT(nn.Module):
def __init__(self, img_size=224, in_chans=3, num_classes=1000,
embed_dims=[96, 192, 384, 768], depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 24],
window_sizes=[7, 7, 14, 7],
mlp_ratio=4.,
drop_rate=0.,
drop_path_rate=0.1,
use_checkpoint=False,
mbconv_expand_ratio=4.0,
local_conv_size=3,
layer_lr_decay=1.0,
):
super().__init__()
self.img_size=img_size
self.num_classes = num_classes
self.depths = depths
self.num_layers = len(depths)
self.mlp_ratio = mlp_ratio
activation = nn.GELU
self.patch_embed = PatchEmbed(in_chans=in_chans,
embed_dim=embed_dims[0],
resolution=img_size,
activation=activation)
patches_resolution = self.patch_embed.patches_resolution
self.patches_resolution = patches_resolution
# stochastic depth
dpr = [x.item() for x in torch.linspace(0, drop_path_rate,
sum(depths))] # stochastic depth decay rule
# build layers
self.layers = nn.ModuleList()
for i_layer in range(self.num_layers):
kwargs = dict(dim=embed_dims[i_layer],
input_resolution=(patches_resolution[0] // (2 ** (i_layer-1 if i_layer == 3 else i_layer)),
patches_resolution[1] // (2 ** (i_layer-1 if i_layer == 3 else i_layer))),
# input_resolution=(patches_resolution[0] // (2 ** i_layer),
# patches_resolution[1] // (2 ** i_layer)),
depth=depths[i_layer],
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
downsample=PatchMerging if (
i_layer < self.num_layers - 1) else None,
use_checkpoint=use_checkpoint,
out_dim=embed_dims[min(
i_layer + 1, len(embed_dims) - 1)],
activation=activation,
)
if i_layer == 0:
layer = ConvLayer(
conv_expand_ratio=mbconv_expand_ratio,
**kwargs,
)
else:
layer = BasicLayer(
num_heads=num_heads[i_layer],
window_size=window_sizes[i_layer],
mlp_ratio=self.mlp_ratio,
drop=drop_rate,
local_conv_size=local_conv_size,
**kwargs)
self.layers.append(layer)
# Classifier head
self.norm_head = nn.LayerNorm(embed_dims[-1])
self.head = nn.Linear(
embed_dims[-1], num_classes) if num_classes > 0 else torch.nn.Identity()
# init weights
self.apply(self._init_weights)
self.set_layer_lr_decay(layer_lr_decay)
self.neck = nn.Sequential(
nn.Conv2d(
embed_dims[-1],
256,
kernel_size=1,
bias=False,
),
LayerNorm2d(256),
nn.Conv2d(
256,
256,
kernel_size=3,
padding=1,
bias=False,
),
LayerNorm2d(256),
)
def set_layer_lr_decay(self, layer_lr_decay):
decay_rate = layer_lr_decay
# layers -> blocks (depth)
depth = sum(self.depths)
lr_scales = [decay_rate ** (depth - i - 1) for i in range(depth)]
#print("LR SCALES:", lr_scales)
def _set_lr_scale(m, scale):
for p in m.parameters():
p.lr_scale = scale
self.patch_embed.apply(lambda x: _set_lr_scale(x, lr_scales[0]))
i = 0
for layer in self.layers:
for block in layer.blocks:
block.apply(lambda x: _set_lr_scale(x, lr_scales[i]))
i += 1
if layer.downsample is not None:
layer.downsample.apply(
lambda x: _set_lr_scale(x, lr_scales[i - 1]))
assert i == depth
for m in [self.norm_head, self.head]:
m.apply(lambda x: _set_lr_scale(x, lr_scales[-1]))
for k, p in self.named_parameters():
p.param_name = k
def _check_lr_scale(m):
for p in m.parameters():
assert hasattr(p, 'lr_scale'), p.param_name
self.apply(_check_lr_scale)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay_keywords(self):
return {'attention_biases'}
def forward_features(self, x):
# x: (N, C, H, W)
x = self.patch_embed(x)
x = self.layers[0](x)
start_i = 1
interm_embeddings=[]
for i in range(start_i, len(self.layers)):
layer = self.layers[i]
x = layer(x)
# print('x shape:', x.shape, '---i:', i)
if i == 1:
interm_embeddings.append(x.view(x.shape[0], 64, 64, -1))
B,_,C=x.size()
x = x.view(B, 64, 64, C)
x=x.permute(0, 3, 1, 2)
x=self.neck(x)
return x, interm_embeddings
def forward(self, x):
x, interm_embeddings = self.forward_features(x)
#x = self.norm_head(x)
#x = self.head(x)
# print('come to here is correct'* 3)
return x, interm_embeddings
_checkpoint_url_format = \
'https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/{}.pth'
_provided_checkpoints = {
'tiny_vit_5m_224': 'tiny_vit_5m_22kto1k_distill',
'tiny_vit_11m_224': 'tiny_vit_11m_22kto1k_distill',
'tiny_vit_21m_224': 'tiny_vit_21m_22kto1k_distill',
'tiny_vit_21m_384': 'tiny_vit_21m_22kto1k_384_distill',
'tiny_vit_21m_512': 'tiny_vit_21m_22kto1k_512_distill',
}
def register_tiny_vit_model(fn):
'''Register a TinyViT model
It is a wrapper of `register_model` with loading the pretrained checkpoint.
'''
def fn_wrapper(pretrained=False, **kwargs):
model = fn()
if pretrained:
model_name = fn.__name__
assert model_name in _provided_checkpoints, \
f'Sorry that the checkpoint `{model_name}` is not provided yet.'
url = _checkpoint_url_format.format(
_provided_checkpoints[model_name])
checkpoint = torch.hub.load_state_dict_from_url(
url=url,
map_location='cpu', check_hash=False,
)
model.load_state_dict(checkpoint['model'])
return model
# rename the name of fn_wrapper
fn_wrapper.__name__ = fn.__name__
return register_model(fn_wrapper)
@register_tiny_vit_model
def tiny_vit_5m_224(pretrained=False, num_classes=1000, drop_path_rate=0.0):
return TinyViT(
num_classes=num_classes,
embed_dims=[64, 128, 160, 320],
depths=[2, 2, 6, 2],
num_heads=[2, 4, 5, 10],
window_sizes=[7, 7, 14, 7],
drop_path_rate=drop_path_rate,
)
@register_tiny_vit_model
def tiny_vit_11m_224(pretrained=False, num_classes=1000, drop_path_rate=0.1):
return TinyViT(
num_classes=num_classes,
embed_dims=[64, 128, 256, 448],
depths=[2, 2, 6, 2],
num_heads=[2, 4, 8, 14],
window_sizes=[7, 7, 14, 7],
drop_path_rate=drop_path_rate,
)
@register_tiny_vit_model
def tiny_vit_21m_224(pretrained=False, num_classes=1000, drop_path_rate=0.2):
return TinyViT(
num_classes=num_classes,
embed_dims=[96, 192, 384, 576],
depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 18],
window_sizes=[7, 7, 14, 7],
drop_path_rate=drop_path_rate,
)
@register_tiny_vit_model
def tiny_vit_21m_384(pretrained=False, num_classes=1000, drop_path_rate=0.1):
return TinyViT(
img_size=384,
num_classes=num_classes,
embed_dims=[96, 192, 384, 576],
depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 18],
window_sizes=[12, 12, 24, 12],
drop_path_rate=drop_path_rate,
)
@register_tiny_vit_model
def tiny_vit_21m_512(pretrained=False, num_classes=1000, drop_path_rate=0.1):
return TinyViT(
img_size=512,
num_classes=num_classes,
embed_dims=[96, 192, 384, 576],
depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 18],
window_sizes=[16, 16, 32, 16],
drop_path_rate=drop_path_rate,
)
|