nervn / handler.py
mart9992's picture
m
9856e13
raw
history blame
1.94 kB
import os
import subprocess
import torch
from test import just_get_sd_mask
import requests
from PIL import Image
from io import BytesIO
print(os.listdir('/usr/local/'))
print(torch.version.cuda)
class EndpointHandler():
def __init__(self, path="."):
is_production = True
if False:
return
os.chdir(path)
os.environ['AM_I_DOCKER'] = 'False'
os.environ['BUILD_WITH_CUDA'] = 'True'
os.environ['CUDA_HOME'] = '/usr/local/cuda-11.7/' if is_production else '/usr/local/cuda-12.1/'
# Install Segment Anything
subprocess.run(["python", "-m", "pip", "install", "-e", "segment_anything"])
# Install Grounding DINO
subprocess.run(["python", "-m", "pip", "install", "-e", "GroundingDINO"])
# Install diffusers
subprocess.run(["pip", "install", "--upgrade", "diffusers[torch]"])
# Install osx
subprocess.run(["git", "submodule", "update", "--init", "--recursive"])
subprocess.run(["bash", "grounded-sam-osx/install.sh"], cwd="grounded-sam-osx")
# Install RAM & Tag2Text
subprocess.run(["git", "clone", "https://github.com/xinyu1205/recognize-anything.git"])
subprocess.run(["pip", "install", "-r", "./recognize-anything/requirements.txt"])
subprocess.run(["pip", "install", "-e", "./recognize-anything/"])
def __call__(self, data):
mask_pil = just_get_sd_mask(Image.open("assets/demo1.jpg"), "bear", 10)
if mask_pil.mode != 'RGB':
mask_pil = mask_pil.convert('RGB')
# Convert PIL image to byte array
img_byte_arr = BytesIO()
mask_pil.save(img_byte_arr, format='JPEG')
img_byte_arr = img_byte_arr.getvalue()
# Upload to file.io
response = requests.post("https://file.io/", files={"file": img_byte_arr})
url = response.json().get('link')
return {"url": url}