- GroundingDINO/groundingdino/__pycache__/__init__.cpython-310.pyc +0 -0
- GroundingDINO/groundingdino/datasets/__pycache__/__init__.cpython-310.pyc +0 -0
- GroundingDINO/groundingdino/datasets/__pycache__/transforms.cpython-310.pyc +0 -0
- __pycache__/grounded_sam_demo.cpython-310.pyc +0 -0
- __pycache__/handler.cpython-310.pyc +0 -0
- __pycache__/test.cpython-310.pyc +0 -0
- grounded_sam_demo.py +51 -159
- handler.py +58 -0
- handler_test.py +13 -0
- test.py +57 -0
GroundingDINO/groundingdino/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (149 Bytes). View file
|
|
GroundingDINO/groundingdino/datasets/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (158 Bytes). View file
|
|
GroundingDINO/groundingdino/datasets/__pycache__/transforms.cpython-310.pyc
ADDED
Binary file (10.1 kB). View file
|
|
__pycache__/grounded_sam_demo.cpython-310.pyc
ADDED
Binary file (3.58 kB). View file
|
|
__pycache__/handler.cpython-310.pyc
ADDED
Binary file (1.88 kB). View file
|
|
__pycache__/test.cpython-310.pyc
ADDED
Binary file (1.73 kB). View file
|
|
grounded_sam_demo.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
-
import
|
|
|
2 |
import os
|
3 |
import copy
|
4 |
|
@@ -16,8 +17,8 @@ from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases
|
|
16 |
|
17 |
# segment anything
|
18 |
from segment_anything import (
|
19 |
-
|
20 |
-
|
21 |
SamPredictor
|
22 |
)
|
23 |
import cv2
|
@@ -25,27 +26,13 @@ import numpy as np
|
|
25 |
import matplotlib.pyplot as plt
|
26 |
|
27 |
|
28 |
-
def load_image(image_path):
|
29 |
-
# load image
|
30 |
-
image_pil = Image.open(image_path).convert("RGB") # load image
|
31 |
-
|
32 |
-
transform = T.Compose(
|
33 |
-
[
|
34 |
-
T.RandomResize([800], max_size=1333),
|
35 |
-
T.ToTensor(),
|
36 |
-
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
37 |
-
]
|
38 |
-
)
|
39 |
-
image, _ = transform(image_pil, None) # 3, h, w
|
40 |
-
return image_pil, image
|
41 |
-
|
42 |
-
|
43 |
def load_model(model_config_path, model_checkpoint_path, device):
|
44 |
args = SLConfig.fromfile(model_config_path)
|
45 |
args.device = device
|
46 |
model = build_model(args)
|
47 |
checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
|
48 |
-
load_res = model.load_state_dict(
|
|
|
49 |
print(load_res)
|
50 |
_ = model.eval()
|
51 |
return model
|
@@ -72,136 +59,38 @@ def get_grounding_output(model, image, caption, box_threshold, text_threshold, w
|
|
72 |
boxes_filt = boxes_filt[filt_mask] # num_filt, 4
|
73 |
logits_filt.shape[0]
|
74 |
|
75 |
-
|
76 |
-
tokenlizer = model.tokenizer
|
77 |
-
tokenized = tokenlizer(caption)
|
78 |
-
# build pred
|
79 |
-
pred_phrases = []
|
80 |
-
for logit, box in zip(logits_filt, boxes_filt):
|
81 |
-
pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer)
|
82 |
-
if with_logits:
|
83 |
-
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
|
84 |
-
else:
|
85 |
-
pred_phrases.append(pred_phrase)
|
86 |
-
|
87 |
-
return boxes_filt, pred_phrases
|
88 |
-
|
89 |
-
def show_mask(mask, ax, random_color=False):
|
90 |
-
if random_color:
|
91 |
-
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
|
92 |
-
else:
|
93 |
-
color = np.array([30/255, 144/255, 255/255, 0.6])
|
94 |
-
h, w = mask.shape[-2:]
|
95 |
-
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
|
96 |
-
ax.imshow(mask_image)
|
97 |
-
|
98 |
-
|
99 |
-
def show_box(box, ax, label):
|
100 |
-
x0, y0 = box[0], box[1]
|
101 |
-
w, h = box[2] - box[0], box[3] - box[1]
|
102 |
-
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
|
103 |
-
ax.text(x0, y0, label)
|
104 |
-
|
105 |
-
|
106 |
-
def save_mask_data(output_dir, mask_list, box_list, label_list):
|
107 |
-
value = 0 # 0 for background
|
108 |
|
109 |
-
mask_img = torch.zeros(mask_list.shape[-2:])
|
110 |
-
for idx, mask in enumerate(mask_list):
|
111 |
-
mask_img[mask.cpu().numpy()[0] == True] = value + idx + 1
|
112 |
-
plt.figure(figsize=(10, 10))
|
113 |
-
plt.imshow(mask_img.numpy())
|
114 |
-
plt.axis('off')
|
115 |
-
plt.savefig(os.path.join(output_dir, 'mask.jpg'), bbox_inches="tight", dpi=300, pad_inches=0.0)
|
116 |
-
|
117 |
-
json_data = [{
|
118 |
-
'value': value,
|
119 |
-
'label': 'background'
|
120 |
-
}]
|
121 |
-
for label, box in zip(label_list, box_list):
|
122 |
-
value += 1
|
123 |
-
name, logit = label.split('(')
|
124 |
-
logit = logit[:-1] # the last is ')'
|
125 |
-
json_data.append({
|
126 |
-
'value': value,
|
127 |
-
'label': name,
|
128 |
-
'logit': float(logit),
|
129 |
-
'box': box.numpy().tolist(),
|
130 |
-
})
|
131 |
-
with open(os.path.join(output_dir, 'mask.json'), 'w') as f:
|
132 |
-
json.dump(json_data, f)
|
133 |
-
|
134 |
-
|
135 |
-
if __name__ == "__main__":
|
136 |
-
|
137 |
-
parser = argparse.ArgumentParser("Grounded-Segment-Anything Demo", add_help=True)
|
138 |
-
parser.add_argument("--config", type=str, required=True, help="path to config file")
|
139 |
-
parser.add_argument(
|
140 |
-
"--grounded_checkpoint", type=str, required=True, help="path to checkpoint file"
|
141 |
-
)
|
142 |
-
parser.add_argument(
|
143 |
-
"--sam_version", type=str, default="vit_h", required=False, help="SAM ViT version: vit_b / vit_l / vit_h"
|
144 |
-
)
|
145 |
-
parser.add_argument(
|
146 |
-
"--sam_checkpoint", type=str, required=False, help="path to sam checkpoint file"
|
147 |
-
)
|
148 |
-
parser.add_argument(
|
149 |
-
"--sam_hq_checkpoint", type=str, default=None, help="path to sam-hq checkpoint file"
|
150 |
-
)
|
151 |
-
parser.add_argument(
|
152 |
-
"--use_sam_hq", action="store_true", help="using sam-hq for prediction"
|
153 |
-
)
|
154 |
-
parser.add_argument("--input_image", type=str, required=True, help="path to image file")
|
155 |
-
parser.add_argument("--text_prompt", type=str, required=True, help="text prompt")
|
156 |
-
parser.add_argument(
|
157 |
-
"--output_dir", "-o", type=str, default="outputs", required=True, help="output directory"
|
158 |
-
)
|
159 |
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
parser.add_argument("--device", type=str, default="cpu", help="running on cpu only!, default=False")
|
164 |
-
args = parser.parse_args()
|
165 |
-
|
166 |
-
# cfg
|
167 |
-
config_file = args.config # change the path of the model config file
|
168 |
-
grounded_checkpoint = args.grounded_checkpoint # change the path of the model
|
169 |
-
sam_version = args.sam_version
|
170 |
-
sam_checkpoint = args.sam_checkpoint
|
171 |
-
sam_hq_checkpoint = args.sam_hq_checkpoint
|
172 |
-
use_sam_hq = args.use_sam_hq
|
173 |
-
image_path = args.input_image
|
174 |
-
text_prompt = args.text_prompt
|
175 |
-
output_dir = args.output_dir
|
176 |
-
box_threshold = args.box_threshold
|
177 |
-
text_threshold = args.text_threshold
|
178 |
-
device = args.device
|
179 |
-
|
180 |
-
# make dir
|
181 |
-
os.makedirs(output_dir, exist_ok=True)
|
182 |
-
# load image
|
183 |
-
image_pil, image = load_image(image_path)
|
184 |
-
# load model
|
185 |
-
model = load_model(config_file, grounded_checkpoint, device=device)
|
186 |
|
187 |
-
#
|
188 |
-
|
|
|
|
|
|
|
|
|
189 |
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
)
|
|
|
|
|
|
|
194 |
|
195 |
-
#
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
image = cv2.cvtColor(
|
202 |
predictor.set_image(image)
|
203 |
|
204 |
-
size =
|
205 |
H, W = size[1], size[0]
|
206 |
for i in range(boxes_filt.size(0)):
|
207 |
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
|
@@ -209,27 +98,30 @@ if __name__ == "__main__":
|
|
209 |
boxes_filt[i][2:] += boxes_filt[i][:2]
|
210 |
|
211 |
boxes_filt = boxes_filt.cpu()
|
212 |
-
transformed_boxes = predictor.transform.apply_boxes_torch(
|
|
|
213 |
|
214 |
masks, _, _ = predictor.predict_torch(
|
215 |
-
point_coords
|
216 |
-
point_labels
|
217 |
-
boxes
|
218 |
-
multimask_output
|
219 |
)
|
220 |
|
221 |
-
#
|
222 |
-
|
223 |
-
|
224 |
-
for mask in masks:
|
225 |
-
|
226 |
-
for box, label in zip(boxes_filt, pred_phrases):
|
227 |
-
show_box(box.numpy(), plt.gca(), label)
|
228 |
|
|
|
|
|
229 |
plt.axis('off')
|
230 |
-
plt.savefig(
|
231 |
-
os.path.join(output_dir, "grounded_sam_output.jpg"),
|
232 |
-
bbox_inches="tight", dpi=300, pad_inches=0.0
|
233 |
-
)
|
234 |
|
235 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from GroundingDINO.groundingdino.datasets.transforms import Compose, RandomResize, ToTensor, Normalize
|
2 |
+
from io import BytesIO
|
3 |
import os
|
4 |
import copy
|
5 |
|
|
|
17 |
|
18 |
# segment anything
|
19 |
from segment_anything import (
|
20 |
+
build_sam,
|
21 |
+
build_sam_hq,
|
22 |
SamPredictor
|
23 |
)
|
24 |
import cv2
|
|
|
26 |
import matplotlib.pyplot as plt
|
27 |
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
def load_model(model_config_path, model_checkpoint_path, device):
|
30 |
args = SLConfig.fromfile(model_config_path)
|
31 |
args.device = device
|
32 |
model = build_model(args)
|
33 |
checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
|
34 |
+
load_res = model.load_state_dict(
|
35 |
+
clean_state_dict(checkpoint["model"]), strict=False)
|
36 |
print(load_res)
|
37 |
_ = model.eval()
|
38 |
return model
|
|
|
59 |
boxes_filt = boxes_filt[filt_mask] # num_filt, 4
|
60 |
logits_filt.shape[0]
|
61 |
|
62 |
+
return boxes_filt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
+
def grounded_sam_demo(input_pil, config_file, grounded_checkpoint, sam_checkpoint,
|
66 |
+
text_prompt, box_threshold=0.3, text_threshold=0.25,
|
67 |
+
device="cuda"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
+
# Convert PIL image to tensor with normalization
|
70 |
+
transform = Compose([
|
71 |
+
RandomResize([800], max_size=1333),
|
72 |
+
ToTensor(),
|
73 |
+
Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
74 |
+
])
|
75 |
|
76 |
+
if input_pil.mode != "RGB":
|
77 |
+
input_pil = input_pil.convert("RGB")
|
78 |
+
|
79 |
+
image, _ = transform(input_pil, None)
|
80 |
+
|
81 |
+
# Load model
|
82 |
+
model = load_model(config_file, grounded_checkpoint, device=device)
|
83 |
|
84 |
+
# Get grounding dino model output
|
85 |
+
boxes_filt = get_grounding_output(
|
86 |
+
model, image, text_prompt, box_threshold, text_threshold, device=device)
|
87 |
+
|
88 |
+
# Initialize SAM
|
89 |
+
predictor = SamPredictor(build_sam(checkpoint=sam_checkpoint).to(device))
|
90 |
+
image = cv2.cvtColor(np.array(input_pil), cv2.COLOR_RGB2BGR)
|
91 |
predictor.set_image(image)
|
92 |
|
93 |
+
size = input_pil.size
|
94 |
H, W = size[1], size[0]
|
95 |
for i in range(boxes_filt.size(0)):
|
96 |
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
|
|
|
98 |
boxes_filt[i][2:] += boxes_filt[i][:2]
|
99 |
|
100 |
boxes_filt = boxes_filt.cpu()
|
101 |
+
transformed_boxes = predictor.transform.apply_boxes_torch(
|
102 |
+
boxes_filt, image.shape[:2]).to(device)
|
103 |
|
104 |
masks, _, _ = predictor.predict_torch(
|
105 |
+
point_coords=None,
|
106 |
+
point_labels=None,
|
107 |
+
boxes=transformed_boxes.to(device),
|
108 |
+
multimask_output=False,
|
109 |
)
|
110 |
|
111 |
+
# Create mask image
|
112 |
+
value = 0 # 0 for background
|
113 |
+
mask_img = torch.zeros(masks.shape[-2:])
|
114 |
+
for idx, mask in enumerate(masks):
|
115 |
+
mask_img[mask.cpu().numpy()[0] == True] = value + idx + 1
|
|
|
|
|
116 |
|
117 |
+
fig = plt.figure(figsize=(10, 10))
|
118 |
+
plt.imshow(mask_img.numpy())
|
119 |
plt.axis('off')
|
|
|
|
|
|
|
|
|
120 |
|
121 |
+
buf = BytesIO()
|
122 |
+
plt.savefig(buf, format='png', bbox_inches="tight",
|
123 |
+
dpi=300, pad_inches=0.0)
|
124 |
+
buf.seek(0)
|
125 |
+
out_pil = Image.open(buf)
|
126 |
+
|
127 |
+
return out_pil
|
handler.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import subprocess
|
3 |
+
import torch
|
4 |
+
from test import just_get_sd_mask
|
5 |
+
import requests
|
6 |
+
from PIL import Image
|
7 |
+
from io import BytesIO
|
8 |
+
|
9 |
+
print(os.listdir('/usr/local/'))
|
10 |
+
print(torch.version.cuda)
|
11 |
+
|
12 |
+
class EndpointHandler():
|
13 |
+
def __init__(self, path="."):
|
14 |
+
is_production = True
|
15 |
+
|
16 |
+
if False:
|
17 |
+
return
|
18 |
+
|
19 |
+
os.chdir(path)
|
20 |
+
|
21 |
+
os.environ['AM_I_DOCKER'] = 'False'
|
22 |
+
os.environ['BUILD_WITH_CUDA'] = 'True'
|
23 |
+
os.environ['CUDA_HOME'] = '/usr/local/cuda-11.7/' if is_production else '/usr/local/cuda-12.1/'
|
24 |
+
|
25 |
+
# Install Segment Anything
|
26 |
+
subprocess.run(["python", "-m", "pip", "install", "-e", "segment_anything"])
|
27 |
+
|
28 |
+
# Install Grounding DINO
|
29 |
+
subprocess.run(["python", "-m", "pip", "install", "-e", "GroundingDINO"])
|
30 |
+
|
31 |
+
# Install diffusers
|
32 |
+
subprocess.run(["pip", "install", "--upgrade", "diffusers[torch]"])
|
33 |
+
|
34 |
+
# Install osx
|
35 |
+
subprocess.run(["git", "submodule", "update", "--init", "--recursive"])
|
36 |
+
subprocess.run(["bash", "grounded-sam-osx/install.sh"], cwd="grounded-sam-osx")
|
37 |
+
|
38 |
+
# Install RAM & Tag2Text
|
39 |
+
subprocess.run(["git", "clone", "https://github.com/xinyu1205/recognize-anything.git"])
|
40 |
+
subprocess.run(["pip", "install", "-r", "./recognize-anything/requirements.txt"])
|
41 |
+
subprocess.run(["pip", "install", "-e", "./recognize-anything/"])
|
42 |
+
|
43 |
+
def __call__(self, data):
|
44 |
+
mask_pil = just_get_sd_mask(Image.open("assets/demo1.jpg"), "bear", 10)
|
45 |
+
|
46 |
+
if mask_pil.mode != 'RGB':
|
47 |
+
mask_pil = mask_pil.convert('RGB')
|
48 |
+
|
49 |
+
# Convert PIL image to byte array
|
50 |
+
img_byte_arr = BytesIO()
|
51 |
+
mask_pil.save(img_byte_arr, format='JPEG')
|
52 |
+
img_byte_arr = img_byte_arr.getvalue()
|
53 |
+
|
54 |
+
# Upload to file.io
|
55 |
+
response = requests.post("https://file.io/", files={"file": img_byte_arr})
|
56 |
+
url = response.json().get('link')
|
57 |
+
|
58 |
+
return {"url": url}
|
handler_test.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from handler import EndpointHandler
|
2 |
+
|
3 |
+
# init handler
|
4 |
+
my_handler = EndpointHandler(path=".")
|
5 |
+
|
6 |
+
# prepare sample payload
|
7 |
+
non_holiday_payload = {"inputs": "I am quite excited how this will turn out", "date": "2022-08-08"}
|
8 |
+
|
9 |
+
# test the handler
|
10 |
+
non_holiday_pred=my_handler(non_holiday_payload)
|
11 |
+
|
12 |
+
# show results
|
13 |
+
print("non_holiday_pred", non_holiday_pred)
|
test.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from grounded_sam_demo import grounded_sam_demo
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
from scipy.ndimage import convolve
|
5 |
+
from scipy.ndimage import binary_dilation
|
6 |
+
|
7 |
+
|
8 |
+
def get_sd_mask(color_mask_pil, target=(72, 4, 84), tolerance=50):
|
9 |
+
image_array = np.array(color_mask_pil)
|
10 |
+
|
11 |
+
# Update target based on the number of color channels in the image array
|
12 |
+
target = np.array(list(target) + [255] *
|
13 |
+
(image_array.shape[-1] - len(target)))
|
14 |
+
|
15 |
+
mask = np.abs(image_array - target) <= tolerance
|
16 |
+
mask = np.all(mask, axis=-1)
|
17 |
+
|
18 |
+
new_image_array = np.ones_like(image_array) * 255 # Start with white
|
19 |
+
# Apply black where condition met
|
20 |
+
new_image_array[mask] = [0] * image_array.shape[-1]
|
21 |
+
|
22 |
+
return Image.fromarray(new_image_array)
|
23 |
+
|
24 |
+
|
25 |
+
def expand_white_pixels(input_pil, expand_by=1):
|
26 |
+
img_array = np.array(input_pil)
|
27 |
+
is_white = np.all(img_array == 255, axis=-1)
|
28 |
+
|
29 |
+
kernel = np.ones((2*expand_by+1, 2*expand_by+1), bool)
|
30 |
+
expanded_white = binary_dilation(is_white, structure=kernel)
|
31 |
+
|
32 |
+
expanded_array = np.where(expanded_white[..., None], 255, img_array)
|
33 |
+
|
34 |
+
expanded_pil = Image.fromarray(expanded_array.astype('uint8'))
|
35 |
+
return expanded_pil
|
36 |
+
|
37 |
+
|
38 |
+
config_file = "GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py"
|
39 |
+
grounded_checkpoint = "groundingdino_swint_ogc.pth"
|
40 |
+
sam_checkpoint = "sam_hq_vit_h.pth"
|
41 |
+
|
42 |
+
|
43 |
+
def just_get_sd_mask(input_pil, text_prompt, padding):
|
44 |
+
print("Doing sam")
|
45 |
+
|
46 |
+
colored_mask_pil = grounded_sam_demo(
|
47 |
+
input_pil, config_file, grounded_checkpoint, sam_checkpoint, text_prompt)
|
48 |
+
|
49 |
+
print("doing to white")
|
50 |
+
|
51 |
+
sd_mask_pil = get_sd_mask(colored_mask_pil)
|
52 |
+
|
53 |
+
print("expanding white pixels")
|
54 |
+
|
55 |
+
sd_mask_withpadding_pil = expand_white_pixels(sd_mask_pil, padding)
|
56 |
+
|
57 |
+
return sd_mask_withpadding_pil
|