|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Hub utilities: utilities related to download and cache models |
|
""" |
|
import json |
|
import os |
|
import re |
|
import shutil |
|
import sys |
|
import tempfile |
|
import traceback |
|
import warnings |
|
from concurrent import futures |
|
from pathlib import Path |
|
from typing import Dict, List, Optional, Tuple, Union |
|
from urllib.parse import urlparse |
|
from uuid import uuid4 |
|
|
|
import huggingface_hub |
|
import requests |
|
from huggingface_hub import ( |
|
CommitOperationAdd, |
|
create_branch, |
|
create_commit, |
|
create_repo, |
|
get_hf_file_metadata, |
|
hf_hub_download, |
|
hf_hub_url, |
|
) |
|
from huggingface_hub.file_download import REGEX_COMMIT_HASH, http_get |
|
from huggingface_hub.utils import ( |
|
EntryNotFoundError, |
|
GatedRepoError, |
|
LocalEntryNotFoundError, |
|
RepositoryNotFoundError, |
|
RevisionNotFoundError, |
|
build_hf_headers, |
|
hf_raise_for_status, |
|
) |
|
from requests.exceptions import HTTPError |
|
|
|
from . import __version__, logging |
|
from .generic import working_or_temp_dir |
|
from .import_utils import ( |
|
ENV_VARS_TRUE_VALUES, |
|
_tf_version, |
|
_torch_version, |
|
is_tf_available, |
|
is_torch_available, |
|
is_training_run_on_sagemaker, |
|
) |
|
from .logging import tqdm |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_is_offline_mode = True if os.environ.get("TRANSFORMERS_OFFLINE", "0").upper() in ENV_VARS_TRUE_VALUES else False |
|
|
|
|
|
def is_offline_mode(): |
|
return _is_offline_mode |
|
|
|
|
|
torch_cache_home = os.getenv("TORCH_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "torch")) |
|
old_default_cache_path = os.path.join(torch_cache_home, "transformers") |
|
|
|
hf_cache_home = os.path.expanduser( |
|
os.getenv("HF_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "huggingface")) |
|
) |
|
default_cache_path = os.path.join(hf_cache_home, "hub") |
|
|
|
|
|
if ( |
|
os.path.isdir(old_default_cache_path) |
|
and not os.path.isdir(default_cache_path) |
|
and "PYTORCH_PRETRAINED_BERT_CACHE" not in os.environ |
|
and "PYTORCH_TRANSFORMERS_CACHE" not in os.environ |
|
and "TRANSFORMERS_CACHE" not in os.environ |
|
): |
|
logger.warning( |
|
"In Transformers v4.0.0, the default path to cache downloaded models changed from" |
|
" '~/.cache/torch/transformers' to '~/.cache/huggingface/transformers'. Since you don't seem to have" |
|
" overridden and '~/.cache/torch/transformers' is a directory that exists, we're moving it to" |
|
" '~/.cache/huggingface/transformers' to avoid redownloading models you have already in the cache. You should" |
|
" only see this message once." |
|
) |
|
shutil.move(old_default_cache_path, default_cache_path) |
|
|
|
PYTORCH_PRETRAINED_BERT_CACHE = os.getenv("PYTORCH_PRETRAINED_BERT_CACHE", default_cache_path) |
|
PYTORCH_TRANSFORMERS_CACHE = os.getenv("PYTORCH_TRANSFORMERS_CACHE", PYTORCH_PRETRAINED_BERT_CACHE) |
|
HUGGINGFACE_HUB_CACHE = os.getenv("HUGGINGFACE_HUB_CACHE", PYTORCH_TRANSFORMERS_CACHE) |
|
TRANSFORMERS_CACHE = os.getenv("TRANSFORMERS_CACHE", HUGGINGFACE_HUB_CACHE) |
|
HF_MODULES_CACHE = os.getenv("HF_MODULES_CACHE", os.path.join(hf_cache_home, "modules")) |
|
TRANSFORMERS_DYNAMIC_MODULE_NAME = "transformers_modules" |
|
SESSION_ID = uuid4().hex |
|
DISABLE_TELEMETRY = os.getenv("DISABLE_TELEMETRY", False) in ENV_VARS_TRUE_VALUES |
|
|
|
S3_BUCKET_PREFIX = "https://s3.amazonaws.com/models.huggingface.co/bert" |
|
CLOUDFRONT_DISTRIB_PREFIX = "https://cdn.huggingface.co" |
|
|
|
_staging_mode = os.environ.get("HUGGINGFACE_CO_STAGING", "NO").upper() in ENV_VARS_TRUE_VALUES |
|
_default_endpoint = "https://hub-ci.huggingface.co" if _staging_mode else "https://huggingface.co" |
|
|
|
HUGGINGFACE_CO_RESOLVE_ENDPOINT = _default_endpoint |
|
if os.environ.get("HUGGINGFACE_CO_RESOLVE_ENDPOINT", None) is not None: |
|
warnings.warn( |
|
"Using the environment variable `HUGGINGFACE_CO_RESOLVE_ENDPOINT` is deprecated and will be removed in " |
|
"Transformers v5. Use `HF_ENDPOINT` instead.", |
|
FutureWarning, |
|
) |
|
HUGGINGFACE_CO_RESOLVE_ENDPOINT = os.environ.get("HUGGINGFACE_CO_RESOLVE_ENDPOINT", None) |
|
HUGGINGFACE_CO_RESOLVE_ENDPOINT = os.environ.get("HF_ENDPOINT", HUGGINGFACE_CO_RESOLVE_ENDPOINT) |
|
HUGGINGFACE_CO_PREFIX = HUGGINGFACE_CO_RESOLVE_ENDPOINT + "/{model_id}/resolve/{revision}/{filename}" |
|
HUGGINGFACE_CO_EXAMPLES_TELEMETRY = HUGGINGFACE_CO_RESOLVE_ENDPOINT + "/api/telemetry/examples" |
|
|
|
|
|
_CACHED_NO_EXIST = object() |
|
|
|
|
|
def is_remote_url(url_or_filename): |
|
parsed = urlparse(url_or_filename) |
|
return parsed.scheme in ("http", "https") |
|
|
|
|
|
def get_cached_models(cache_dir: Union[str, Path] = None) -> List[Tuple]: |
|
""" |
|
Returns a list of tuples representing model binaries that are cached locally. Each tuple has shape `(model_url, |
|
etag, size_MB)`. Filenames in `cache_dir` are use to get the metadata for each model, only urls ending with *.bin* |
|
are added. |
|
|
|
Args: |
|
cache_dir (`Union[str, Path]`, *optional*): |
|
The cache directory to search for models within. Will default to the transformers cache if unset. |
|
|
|
Returns: |
|
List[Tuple]: List of tuples each with shape `(model_url, etag, size_MB)` |
|
""" |
|
if cache_dir is None: |
|
cache_dir = TRANSFORMERS_CACHE |
|
elif isinstance(cache_dir, Path): |
|
cache_dir = str(cache_dir) |
|
if not os.path.isdir(cache_dir): |
|
return [] |
|
|
|
cached_models = [] |
|
for file in os.listdir(cache_dir): |
|
if file.endswith(".json"): |
|
meta_path = os.path.join(cache_dir, file) |
|
with open(meta_path, encoding="utf-8") as meta_file: |
|
metadata = json.load(meta_file) |
|
url = metadata["url"] |
|
etag = metadata["etag"] |
|
if url.endswith(".bin"): |
|
size_MB = os.path.getsize(meta_path.strip(".json")) / 1e6 |
|
cached_models.append((url, etag, size_MB)) |
|
|
|
return cached_models |
|
|
|
|
|
def define_sagemaker_information(): |
|
try: |
|
instance_data = requests.get(os.environ["ECS_CONTAINER_METADATA_URI"]).json() |
|
dlc_container_used = instance_data["Image"] |
|
dlc_tag = instance_data["Image"].split(":")[1] |
|
except Exception: |
|
dlc_container_used = None |
|
dlc_tag = None |
|
|
|
sagemaker_params = json.loads(os.getenv("SM_FRAMEWORK_PARAMS", "{}")) |
|
runs_distributed_training = True if "sagemaker_distributed_dataparallel_enabled" in sagemaker_params else False |
|
account_id = os.getenv("TRAINING_JOB_ARN").split(":")[4] if "TRAINING_JOB_ARN" in os.environ else None |
|
|
|
sagemaker_object = { |
|
"sm_framework": os.getenv("SM_FRAMEWORK_MODULE", None), |
|
"sm_region": os.getenv("AWS_REGION", None), |
|
"sm_number_gpu": os.getenv("SM_NUM_GPUS", 0), |
|
"sm_number_cpu": os.getenv("SM_NUM_CPUS", 0), |
|
"sm_distributed_training": runs_distributed_training, |
|
"sm_deep_learning_container": dlc_container_used, |
|
"sm_deep_learning_container_tag": dlc_tag, |
|
"sm_account_id": account_id, |
|
} |
|
return sagemaker_object |
|
|
|
|
|
def http_user_agent(user_agent: Union[Dict, str, None] = None) -> str: |
|
""" |
|
Formats a user-agent string with basic info about a request. |
|
""" |
|
ua = f"transformers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}" |
|
if is_torch_available(): |
|
ua += f"; torch/{_torch_version}" |
|
if is_tf_available(): |
|
ua += f"; tensorflow/{_tf_version}" |
|
if DISABLE_TELEMETRY: |
|
return ua + "; telemetry/off" |
|
if is_training_run_on_sagemaker(): |
|
ua += "; " + "; ".join(f"{k}/{v}" for k, v in define_sagemaker_information().items()) |
|
|
|
if os.environ.get("TRANSFORMERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES: |
|
ua += "; is_ci/true" |
|
if isinstance(user_agent, dict): |
|
ua += "; " + "; ".join(f"{k}/{v}" for k, v in user_agent.items()) |
|
elif isinstance(user_agent, str): |
|
ua += "; " + user_agent |
|
return ua |
|
|
|
|
|
def extract_commit_hash(resolved_file: Optional[str], commit_hash: Optional[str]): |
|
""" |
|
Extracts the commit hash from a resolved filename toward a cache file. |
|
""" |
|
if resolved_file is None or commit_hash is not None: |
|
return commit_hash |
|
resolved_file = str(Path(resolved_file).as_posix()) |
|
search = re.search(r"snapshots/([^/]+)/", resolved_file) |
|
if search is None: |
|
return None |
|
commit_hash = search.groups()[0] |
|
return commit_hash if REGEX_COMMIT_HASH.match(commit_hash) else None |
|
|
|
|
|
def try_to_load_from_cache( |
|
repo_id: str, |
|
filename: str, |
|
cache_dir: Union[str, Path, None] = None, |
|
revision: Optional[str] = None, |
|
repo_type: Optional[str] = None, |
|
) -> Optional[str]: |
|
""" |
|
Explores the cache to return the latest cached file for a given revision if found. |
|
|
|
This function will not raise any exception if the file in not cached. |
|
|
|
Args: |
|
cache_dir (`str` or `os.PathLike`): |
|
The folder where the cached files lie. |
|
repo_id (`str`): |
|
The ID of the repo on huggingface.co. |
|
filename (`str`): |
|
The filename to look for inside `repo_id`. |
|
revision (`str`, *optional*): |
|
The specific model version to use. Will default to `"main"` if it's not provided and no `commit_hash` is |
|
provided either. |
|
repo_type (`str`, *optional*): |
|
The type of the repo. |
|
|
|
Returns: |
|
`Optional[str]` or `_CACHED_NO_EXIST`: |
|
Will return `None` if the file was not cached. Otherwise: |
|
- The exact path to the cached file if it's found in the cache |
|
- A special value `_CACHED_NO_EXIST` if the file does not exist at the given commit hash and this fact was |
|
cached. |
|
""" |
|
if revision is None: |
|
revision = "main" |
|
|
|
if cache_dir is None: |
|
cache_dir = TRANSFORMERS_CACHE |
|
|
|
object_id = repo_id.replace("/", "--") |
|
if repo_type is None: |
|
repo_type = "model" |
|
repo_cache = os.path.join(cache_dir, f"{repo_type}s--{object_id}") |
|
if not os.path.isdir(repo_cache): |
|
|
|
return None |
|
for subfolder in ["refs", "snapshots"]: |
|
if not os.path.isdir(os.path.join(repo_cache, subfolder)): |
|
return None |
|
|
|
|
|
cached_refs = os.listdir(os.path.join(repo_cache, "refs")) |
|
if revision in cached_refs: |
|
with open(os.path.join(repo_cache, "refs", revision)) as f: |
|
revision = f.read() |
|
|
|
if os.path.isfile(os.path.join(repo_cache, ".no_exist", revision, filename)): |
|
return _CACHED_NO_EXIST |
|
|
|
cached_shas = os.listdir(os.path.join(repo_cache, "snapshots")) |
|
if revision not in cached_shas: |
|
|
|
return None |
|
|
|
cached_file = os.path.join(repo_cache, "snapshots", revision, filename) |
|
return cached_file if os.path.isfile(cached_file) else None |
|
|
|
|
|
def cached_file( |
|
path_or_repo_id: Union[str, os.PathLike], |
|
filename: str, |
|
cache_dir: Optional[Union[str, os.PathLike]] = None, |
|
force_download: bool = False, |
|
resume_download: bool = False, |
|
proxies: Optional[Dict[str, str]] = None, |
|
token: Optional[Union[bool, str]] = None, |
|
revision: Optional[str] = None, |
|
local_files_only: bool = False, |
|
subfolder: str = "", |
|
repo_type: Optional[str] = None, |
|
user_agent: Optional[Union[str, Dict[str, str]]] = None, |
|
_raise_exceptions_for_missing_entries: bool = True, |
|
_raise_exceptions_for_connection_errors: bool = True, |
|
_commit_hash: Optional[str] = None, |
|
**deprecated_kwargs, |
|
): |
|
""" |
|
Tries to locate a file in a local folder and repo, downloads and cache it if necessary. |
|
|
|
Args: |
|
path_or_repo_id (`str` or `os.PathLike`): |
|
This can be either: |
|
|
|
- a string, the *model id* of a model repo on huggingface.co. |
|
- a path to a *directory* potentially containing the file. |
|
filename (`str`): |
|
The name of the file to locate in `path_or_repo`. |
|
cache_dir (`str` or `os.PathLike`, *optional*): |
|
Path to a directory in which a downloaded pretrained model configuration should be cached if the standard |
|
cache should not be used. |
|
force_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to force to (re-)download the configuration files and override the cached versions if they |
|
exist. |
|
resume_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists. |
|
proxies (`Dict[str, str]`, *optional*): |
|
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', |
|
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. |
|
token (`str` or *bool*, *optional*): |
|
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated |
|
when running `huggingface-cli login` (stored in `~/.huggingface`). |
|
revision (`str`, *optional*, defaults to `"main"`): |
|
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a |
|
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any |
|
identifier allowed by git. |
|
local_files_only (`bool`, *optional*, defaults to `False`): |
|
If `True`, will only try to load the tokenizer configuration from local files. |
|
subfolder (`str`, *optional*, defaults to `""`): |
|
In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can |
|
specify the folder name here. |
|
repo_type (`str`, *optional*): |
|
Specify the repo type (useful when downloading from a space for instance). |
|
|
|
<Tip> |
|
|
|
Passing `token=True` is required when you want to use a private model. |
|
|
|
</Tip> |
|
|
|
Returns: |
|
`Optional[str]`: Returns the resolved file (to the cache folder if downloaded from a repo). |
|
|
|
Examples: |
|
|
|
```python |
|
# Download a model weight from the Hub and cache it. |
|
model_weights_file = cached_file("bert-base-uncased", "pytorch_model.bin") |
|
```""" |
|
use_auth_token = deprecated_kwargs.pop("use_auth_token", None) |
|
if use_auth_token is not None: |
|
warnings.warn( |
|
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning |
|
) |
|
if token is not None: |
|
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") |
|
token = use_auth_token |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if is_offline_mode() and not local_files_only: |
|
logger.info("Offline mode: forcing local_files_only=True") |
|
local_files_only = True |
|
if subfolder is None: |
|
subfolder = "" |
|
|
|
path_or_repo_id = str(path_or_repo_id) |
|
full_filename = os.path.join(subfolder, filename) |
|
if os.path.isdir(path_or_repo_id): |
|
resolved_file = os.path.join(os.path.join(path_or_repo_id, subfolder), filename) |
|
if not os.path.isfile(resolved_file): |
|
if _raise_exceptions_for_missing_entries: |
|
raise EnvironmentError( |
|
f"{path_or_repo_id} does not appear to have a file named {full_filename}. Checkout " |
|
f"'https://huggingface.co/{path_or_repo_id}/{revision}' for available files." |
|
) |
|
else: |
|
return None |
|
return resolved_file |
|
|
|
if cache_dir is None: |
|
cache_dir = TRANSFORMERS_CACHE |
|
if isinstance(cache_dir, Path): |
|
cache_dir = str(cache_dir) |
|
|
|
if _commit_hash is not None and not force_download: |
|
|
|
resolved_file = try_to_load_from_cache( |
|
path_or_repo_id, full_filename, cache_dir=cache_dir, revision=_commit_hash, repo_type=repo_type |
|
) |
|
if resolved_file is not None: |
|
if resolved_file is not _CACHED_NO_EXIST: |
|
return resolved_file |
|
elif not _raise_exceptions_for_missing_entries: |
|
return None |
|
else: |
|
raise EnvironmentError(f"Could not locate {full_filename} inside {path_or_repo_id}.") |
|
|
|
user_agent = http_user_agent(user_agent) |
|
try: |
|
|
|
resolved_file = hf_hub_download( |
|
path_or_repo_id, |
|
filename, |
|
subfolder=None if len(subfolder) == 0 else subfolder, |
|
repo_type=repo_type, |
|
revision=revision, |
|
cache_dir=cache_dir, |
|
user_agent=user_agent, |
|
force_download=force_download, |
|
proxies=proxies, |
|
resume_download=resume_download, |
|
token=token, |
|
local_files_only=local_files_only, |
|
) |
|
except GatedRepoError as e: |
|
raise EnvironmentError( |
|
"You are trying to access a gated repo.\nMake sure to request access at " |
|
f"https://huggingface.co/{path_or_repo_id} and pass a token having permission to this repo either " |
|
"by logging in with `huggingface-cli login` or by passing `token=<your_token>`." |
|
) from e |
|
except RepositoryNotFoundError as e: |
|
raise EnvironmentError( |
|
f"{path_or_repo_id} is not a local folder and is not a valid model identifier " |
|
"listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a token " |
|
"having permission to this repo either by logging in with `huggingface-cli login` or by passing " |
|
"`token=<your_token>`" |
|
) from e |
|
except RevisionNotFoundError as e: |
|
raise EnvironmentError( |
|
f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists " |
|
"for this model name. Check the model page at " |
|
f"'https://huggingface.co/{path_or_repo_id}' for available revisions." |
|
) from e |
|
except LocalEntryNotFoundError as e: |
|
|
|
resolved_file = try_to_load_from_cache(path_or_repo_id, full_filename, cache_dir=cache_dir, revision=revision) |
|
if resolved_file is not None and resolved_file != _CACHED_NO_EXIST: |
|
return resolved_file |
|
if not _raise_exceptions_for_missing_entries or not _raise_exceptions_for_connection_errors: |
|
return None |
|
raise EnvironmentError( |
|
f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this file, couldn't find it in the" |
|
f" cached files and it looks like {path_or_repo_id} is not the path to a directory containing a file named" |
|
f" {full_filename}.\nCheckout your internet connection or see how to run the library in offline mode at" |
|
" 'https://huggingface.co/docs/transformers/installation#offline-mode'." |
|
) from e |
|
except EntryNotFoundError as e: |
|
if not _raise_exceptions_for_missing_entries: |
|
return None |
|
if revision is None: |
|
revision = "main" |
|
raise EnvironmentError( |
|
f"{path_or_repo_id} does not appear to have a file named {full_filename}. Checkout " |
|
f"'https://huggingface.co/{path_or_repo_id}/{revision}' for available files." |
|
) from e |
|
except HTTPError as err: |
|
|
|
resolved_file = try_to_load_from_cache(path_or_repo_id, full_filename, cache_dir=cache_dir, revision=revision) |
|
if resolved_file is not None and resolved_file != _CACHED_NO_EXIST: |
|
return resolved_file |
|
if not _raise_exceptions_for_connection_errors: |
|
return None |
|
|
|
raise EnvironmentError(f"There was a specific connection error when trying to load {path_or_repo_id}:\n{err}") |
|
|
|
return resolved_file |
|
|
|
|
|
def get_file_from_repo( |
|
path_or_repo: Union[str, os.PathLike], |
|
filename: str, |
|
cache_dir: Optional[Union[str, os.PathLike]] = None, |
|
force_download: bool = False, |
|
resume_download: bool = False, |
|
proxies: Optional[Dict[str, str]] = None, |
|
token: Optional[Union[bool, str]] = None, |
|
revision: Optional[str] = None, |
|
local_files_only: bool = False, |
|
subfolder: str = "", |
|
**deprecated_kwargs, |
|
): |
|
""" |
|
Tries to locate a file in a local folder and repo, downloads and cache it if necessary. |
|
|
|
Args: |
|
path_or_repo (`str` or `os.PathLike`): |
|
This can be either: |
|
|
|
- a string, the *model id* of a model repo on huggingface.co. |
|
- a path to a *directory* potentially containing the file. |
|
filename (`str`): |
|
The name of the file to locate in `path_or_repo`. |
|
cache_dir (`str` or `os.PathLike`, *optional*): |
|
Path to a directory in which a downloaded pretrained model configuration should be cached if the standard |
|
cache should not be used. |
|
force_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to force to (re-)download the configuration files and override the cached versions if they |
|
exist. |
|
resume_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists. |
|
proxies (`Dict[str, str]`, *optional*): |
|
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', |
|
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. |
|
token (`str` or *bool*, *optional*): |
|
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated |
|
when running `huggingface-cli login` (stored in `~/.huggingface`). |
|
revision (`str`, *optional*, defaults to `"main"`): |
|
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a |
|
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any |
|
identifier allowed by git. |
|
local_files_only (`bool`, *optional*, defaults to `False`): |
|
If `True`, will only try to load the tokenizer configuration from local files. |
|
subfolder (`str`, *optional*, defaults to `""`): |
|
In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can |
|
specify the folder name here. |
|
|
|
<Tip> |
|
|
|
Passing `token=True` is required when you want to use a private model. |
|
|
|
</Tip> |
|
|
|
Returns: |
|
`Optional[str]`: Returns the resolved file (to the cache folder if downloaded from a repo) or `None` if the |
|
file does not exist. |
|
|
|
Examples: |
|
|
|
```python |
|
# Download a tokenizer configuration from huggingface.co and cache. |
|
tokenizer_config = get_file_from_repo("bert-base-uncased", "tokenizer_config.json") |
|
# This model does not have a tokenizer config so the result will be None. |
|
tokenizer_config = get_file_from_repo("xlm-roberta-base", "tokenizer_config.json") |
|
```""" |
|
use_auth_token = deprecated_kwargs.pop("use_auth_token", None) |
|
if use_auth_token is not None: |
|
warnings.warn( |
|
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning |
|
) |
|
if token is not None: |
|
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") |
|
token = use_auth_token |
|
|
|
return cached_file( |
|
path_or_repo_id=path_or_repo, |
|
filename=filename, |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
resume_download=resume_download, |
|
proxies=proxies, |
|
token=token, |
|
revision=revision, |
|
local_files_only=local_files_only, |
|
subfolder=subfolder, |
|
_raise_exceptions_for_missing_entries=False, |
|
_raise_exceptions_for_connection_errors=False, |
|
) |
|
|
|
|
|
def download_url(url, proxies=None): |
|
""" |
|
Downloads a given url in a temporary file. This function is not safe to use in multiple processes. Its only use is |
|
for deprecated behavior allowing to download config/models with a single url instead of using the Hub. |
|
|
|
Args: |
|
url (`str`): The url of the file to download. |
|
proxies (`Dict[str, str]`, *optional*): |
|
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', |
|
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. |
|
|
|
Returns: |
|
`str`: The location of the temporary file where the url was downloaded. |
|
""" |
|
warnings.warn( |
|
f"Using `from_pretrained` with the url of a file (here {url}) is deprecated and won't be possible anymore in" |
|
" v5 of Transformers. You should host your file on the Hub (hf.co) instead and use the repository ID. Note" |
|
" that this is not compatible with the caching system (your file will be downloaded at each execution) or" |
|
" multiple processes (each process will download the file in a different temporary file)." |
|
) |
|
tmp_file = tempfile.mkstemp()[1] |
|
with open(tmp_file, "wb") as f: |
|
http_get(url, f, proxies=proxies) |
|
return tmp_file |
|
|
|
|
|
def has_file( |
|
path_or_repo: Union[str, os.PathLike], |
|
filename: str, |
|
revision: Optional[str] = None, |
|
proxies: Optional[Dict[str, str]] = None, |
|
token: Optional[Union[bool, str]] = None, |
|
**deprecated_kwargs, |
|
): |
|
""" |
|
Checks if a repo contains a given file without downloading it. Works for remote repos and local folders. |
|
|
|
<Tip warning={false}> |
|
|
|
This function will raise an error if the repository `path_or_repo` is not valid or if `revision` does not exist for |
|
this repo, but will return False for regular connection errors. |
|
|
|
</Tip> |
|
""" |
|
use_auth_token = deprecated_kwargs.pop("use_auth_token", None) |
|
if use_auth_token is not None: |
|
warnings.warn( |
|
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning |
|
) |
|
if token is not None: |
|
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") |
|
token = use_auth_token |
|
|
|
if os.path.isdir(path_or_repo): |
|
return os.path.isfile(os.path.join(path_or_repo, filename)) |
|
|
|
url = hf_hub_url(path_or_repo, filename=filename, revision=revision) |
|
headers = build_hf_headers(token=token, user_agent=http_user_agent()) |
|
|
|
r = requests.head(url, headers=headers, allow_redirects=False, proxies=proxies, timeout=10) |
|
try: |
|
hf_raise_for_status(r) |
|
return True |
|
except GatedRepoError as e: |
|
logger.error(e) |
|
raise EnvironmentError( |
|
f"{path_or_repo} is a gated repository. Make sure to request access at " |
|
f"https://huggingface.co/{path_or_repo} and pass a token having permission to this repo either by " |
|
"logging in with `huggingface-cli login` or by passing `token=<your_token>`." |
|
) from e |
|
except RepositoryNotFoundError as e: |
|
logger.error(e) |
|
raise EnvironmentError(f"{path_or_repo} is not a local folder or a valid repository name on 'https://hf.co'.") |
|
except RevisionNotFoundError as e: |
|
logger.error(e) |
|
raise EnvironmentError( |
|
f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for this " |
|
f"model name. Check the model page at 'https://huggingface.co/{path_or_repo}' for available revisions." |
|
) |
|
except requests.HTTPError: |
|
|
|
return False |
|
|
|
|
|
class PushToHubMixin: |
|
""" |
|
A Mixin containing the functionality to push a model or tokenizer to the hub. |
|
""" |
|
|
|
def _create_repo( |
|
self, |
|
repo_id: str, |
|
private: Optional[bool] = None, |
|
token: Optional[Union[bool, str]] = None, |
|
repo_url: Optional[str] = None, |
|
organization: Optional[str] = None, |
|
) -> str: |
|
""" |
|
Create the repo if needed, cleans up repo_id with deprecated kwargs `repo_url` and `organization`, retrieves |
|
the token. |
|
""" |
|
if repo_url is not None: |
|
warnings.warn( |
|
"The `repo_url` argument is deprecated and will be removed in v5 of Transformers. Use `repo_id` " |
|
"instead." |
|
) |
|
if repo_id is not None: |
|
raise ValueError( |
|
"`repo_id` and `repo_url` are both specified. Please set only the argument `repo_id`." |
|
) |
|
repo_id = repo_url.replace(f"{HUGGINGFACE_CO_RESOLVE_ENDPOINT}/", "") |
|
if organization is not None: |
|
warnings.warn( |
|
"The `organization` argument is deprecated and will be removed in v5 of Transformers. Set your " |
|
"organization directly in the `repo_id` passed instead (`repo_id={organization}/{model_id}`)." |
|
) |
|
if not repo_id.startswith(organization): |
|
if "/" in repo_id: |
|
repo_id = repo_id.split("/")[-1] |
|
repo_id = f"{organization}/{repo_id}" |
|
|
|
url = create_repo(repo_id=repo_id, token=token, private=private, exist_ok=True) |
|
return url.repo_id |
|
|
|
def _get_files_timestamps(self, working_dir: Union[str, os.PathLike]): |
|
""" |
|
Returns the list of files with their last modification timestamp. |
|
""" |
|
return {f: os.path.getmtime(os.path.join(working_dir, f)) for f in os.listdir(working_dir)} |
|
|
|
def _upload_modified_files( |
|
self, |
|
working_dir: Union[str, os.PathLike], |
|
repo_id: str, |
|
files_timestamps: Dict[str, float], |
|
commit_message: Optional[str] = None, |
|
token: Optional[Union[bool, str]] = None, |
|
create_pr: bool = False, |
|
revision: str = None, |
|
): |
|
""" |
|
Uploads all modified files in `working_dir` to `repo_id`, based on `files_timestamps`. |
|
""" |
|
if commit_message is None: |
|
if "Model" in self.__class__.__name__: |
|
commit_message = "Upload model" |
|
elif "Config" in self.__class__.__name__: |
|
commit_message = "Upload config" |
|
elif "Tokenizer" in self.__class__.__name__: |
|
commit_message = "Upload tokenizer" |
|
elif "FeatureExtractor" in self.__class__.__name__: |
|
commit_message = "Upload feature extractor" |
|
elif "Processor" in self.__class__.__name__: |
|
commit_message = "Upload processor" |
|
else: |
|
commit_message = f"Upload {self.__class__.__name__}" |
|
modified_files = [ |
|
f |
|
for f in os.listdir(working_dir) |
|
if f not in files_timestamps or os.path.getmtime(os.path.join(working_dir, f)) > files_timestamps[f] |
|
] |
|
|
|
|
|
modified_files = [ |
|
f |
|
for f in modified_files |
|
if os.path.isfile(os.path.join(working_dir, f)) or os.path.isdir(os.path.join(working_dir, f)) |
|
] |
|
|
|
operations = [] |
|
|
|
for file in modified_files: |
|
if os.path.isdir(os.path.join(working_dir, file)): |
|
|
|
for f in os.listdir(os.path.join(working_dir, file)): |
|
operations.append( |
|
CommitOperationAdd( |
|
path_or_fileobj=os.path.join(working_dir, file, f), path_in_repo=os.path.join(file, f) |
|
) |
|
) |
|
else: |
|
operations.append( |
|
CommitOperationAdd(path_or_fileobj=os.path.join(working_dir, file), path_in_repo=file) |
|
) |
|
|
|
if revision is not None: |
|
create_branch(repo_id=repo_id, branch=revision, token=token, exist_ok=True) |
|
|
|
logger.info(f"Uploading the following files to {repo_id}: {','.join(modified_files)}") |
|
return create_commit( |
|
repo_id=repo_id, |
|
operations=operations, |
|
commit_message=commit_message, |
|
token=token, |
|
create_pr=create_pr, |
|
revision=revision, |
|
) |
|
|
|
def push_to_hub( |
|
self, |
|
repo_id: str, |
|
use_temp_dir: Optional[bool] = None, |
|
commit_message: Optional[str] = None, |
|
private: Optional[bool] = None, |
|
token: Optional[Union[bool, str]] = None, |
|
max_shard_size: Optional[Union[int, str]] = "10GB", |
|
create_pr: bool = False, |
|
safe_serialization: bool = False, |
|
revision: str = None, |
|
**deprecated_kwargs, |
|
) -> str: |
|
""" |
|
Upload the {object_files} to the 🤗 Model Hub. |
|
|
|
Parameters: |
|
repo_id (`str`): |
|
The name of the repository you want to push your {object} to. It should contain your organization name |
|
when pushing to a given organization. |
|
use_temp_dir (`bool`, *optional*): |
|
Whether or not to use a temporary directory to store the files saved before they are pushed to the Hub. |
|
Will default to `True` if there is no directory named like `repo_id`, `False` otherwise. |
|
commit_message (`str`, *optional*): |
|
Message to commit while pushing. Will default to `"Upload {object}"`. |
|
private (`bool`, *optional*): |
|
Whether or not the repository created should be private. |
|
token (`bool` or `str`, *optional*): |
|
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated |
|
when running `huggingface-cli login` (stored in `~/.huggingface`). Will default to `True` if `repo_url` |
|
is not specified. |
|
max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`): |
|
Only applicable for models. The maximum size for a checkpoint before being sharded. Checkpoints shard |
|
will then be each of size lower than this size. If expressed as a string, needs to be digits followed |
|
by a unit (like `"5MB"`). |
|
create_pr (`bool`, *optional*, defaults to `False`): |
|
Whether or not to create a PR with the uploaded files or directly commit. |
|
safe_serialization (`bool`, *optional*, defaults to `False`): |
|
Whether or not to convert the model weights in safetensors format for safer serialization. |
|
revision (`str`, *optional*): |
|
Branch to push the uploaded files to. |
|
|
|
Examples: |
|
|
|
```python |
|
from transformers import {object_class} |
|
|
|
{object} = {object_class}.from_pretrained("bert-base-cased") |
|
|
|
# Push the {object} to your namespace with the name "my-finetuned-bert". |
|
{object}.push_to_hub("my-finetuned-bert") |
|
|
|
# Push the {object} to an organization with the name "my-finetuned-bert". |
|
{object}.push_to_hub("huggingface/my-finetuned-bert") |
|
``` |
|
""" |
|
use_auth_token = deprecated_kwargs.pop("use_auth_token", None) |
|
if use_auth_token is not None: |
|
warnings.warn( |
|
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning |
|
) |
|
if token is not None: |
|
raise ValueError( |
|
"`token` and `use_auth_token` are both specified. Please set only the argument `token`." |
|
) |
|
token = use_auth_token |
|
|
|
repo_path_or_name = deprecated_kwargs.pop("repo_path_or_name", None) |
|
if repo_path_or_name is not None: |
|
|
|
|
|
warnings.warn( |
|
"The `repo_path_or_name` argument is deprecated and will be removed in v5 of Transformers. Use " |
|
"`repo_id` instead.", |
|
FutureWarning, |
|
) |
|
if repo_id is not None: |
|
raise ValueError( |
|
"`repo_id` and `repo_path_or_name` are both specified. Please set only the argument `repo_id`." |
|
) |
|
if os.path.isdir(repo_path_or_name): |
|
|
|
repo_id = repo_id.split(os.path.sep)[-1] |
|
working_dir = repo_id |
|
else: |
|
|
|
repo_id = repo_path_or_name |
|
working_dir = repo_id.split("/")[-1] |
|
else: |
|
|
|
working_dir = repo_id.split("/")[-1] |
|
|
|
|
|
repo_url = deprecated_kwargs.pop("repo_url", None) |
|
organization = deprecated_kwargs.pop("organization", None) |
|
|
|
repo_id = self._create_repo( |
|
repo_id, private=private, token=token, repo_url=repo_url, organization=organization |
|
) |
|
|
|
if use_temp_dir is None: |
|
use_temp_dir = not os.path.isdir(working_dir) |
|
|
|
with working_or_temp_dir(working_dir=working_dir, use_temp_dir=use_temp_dir) as work_dir: |
|
files_timestamps = self._get_files_timestamps(work_dir) |
|
|
|
|
|
self.save_pretrained(work_dir, max_shard_size=max_shard_size, safe_serialization=safe_serialization) |
|
|
|
return self._upload_modified_files( |
|
work_dir, |
|
repo_id, |
|
files_timestamps, |
|
commit_message=commit_message, |
|
token=token, |
|
create_pr=create_pr, |
|
revision=revision, |
|
) |
|
|
|
|
|
def send_example_telemetry(example_name, *example_args, framework="pytorch"): |
|
""" |
|
Sends telemetry that helps tracking the examples use. |
|
|
|
Args: |
|
example_name (`str`): The name of the example. |
|
*example_args (dataclasses or `argparse.ArgumentParser`): The arguments to the script. This function will only |
|
try to extract the model and dataset name from those. Nothing else is tracked. |
|
framework (`str`, *optional*, defaults to `"pytorch"`): The framework for the example. |
|
""" |
|
if is_offline_mode(): |
|
return |
|
|
|
data = {"example": example_name, "framework": framework} |
|
for args in example_args: |
|
args_as_dict = {k: v for k, v in args.__dict__.items() if not k.startswith("_") and v is not None} |
|
if "model_name_or_path" in args_as_dict: |
|
model_name = args_as_dict["model_name_or_path"] |
|
|
|
if not os.path.isdir(model_name): |
|
data["model_name"] = args_as_dict["model_name_or_path"] |
|
if "dataset_name" in args_as_dict: |
|
data["dataset_name"] = args_as_dict["dataset_name"] |
|
elif "task_name" in args_as_dict: |
|
|
|
script_name = example_name.replace("tf_", "").replace("flax_", "").replace("run_", "") |
|
script_name = script_name.replace("_no_trainer", "") |
|
data["dataset_name"] = f"{script_name}-{args_as_dict['task_name']}" |
|
|
|
headers = {"user-agent": http_user_agent(data)} |
|
try: |
|
r = requests.head(HUGGINGFACE_CO_EXAMPLES_TELEMETRY, headers=headers) |
|
r.raise_for_status() |
|
except Exception: |
|
|
|
pass |
|
|
|
|
|
def convert_file_size_to_int(size: Union[int, str]): |
|
""" |
|
Converts a size expressed as a string with digits an unit (like `"5MB"`) to an integer (in bytes). |
|
|
|
Args: |
|
size (`int` or `str`): The size to convert. Will be directly returned if an `int`. |
|
|
|
Example: |
|
```py |
|
>>> convert_file_size_to_int("1MiB") |
|
1048576 |
|
``` |
|
""" |
|
if isinstance(size, int): |
|
return size |
|
if size.upper().endswith("GIB"): |
|
return int(size[:-3]) * (2**30) |
|
if size.upper().endswith("MIB"): |
|
return int(size[:-3]) * (2**20) |
|
if size.upper().endswith("KIB"): |
|
return int(size[:-3]) * (2**10) |
|
if size.upper().endswith("GB"): |
|
int_size = int(size[:-2]) * (10**9) |
|
return int_size // 8 if size.endswith("b") else int_size |
|
if size.upper().endswith("MB"): |
|
int_size = int(size[:-2]) * (10**6) |
|
return int_size // 8 if size.endswith("b") else int_size |
|
if size.upper().endswith("KB"): |
|
int_size = int(size[:-2]) * (10**3) |
|
return int_size // 8 if size.endswith("b") else int_size |
|
raise ValueError("`size` is not in a valid format. Use an integer followed by the unit, e.g., '5GB'.") |
|
|
|
|
|
def get_checkpoint_shard_files( |
|
pretrained_model_name_or_path, |
|
index_filename, |
|
cache_dir=None, |
|
force_download=False, |
|
proxies=None, |
|
resume_download=False, |
|
local_files_only=False, |
|
token=None, |
|
user_agent=None, |
|
revision=None, |
|
subfolder="", |
|
_commit_hash=None, |
|
**deprecated_kwargs, |
|
): |
|
""" |
|
For a given model: |
|
|
|
- download and cache all the shards of a sharded checkpoint if `pretrained_model_name_or_path` is a model ID on the |
|
Hub |
|
- returns the list of paths to all the shards, as well as some metadata. |
|
|
|
For the description of each arg, see [`PreTrainedModel.from_pretrained`]. `index_filename` is the full path to the |
|
index (downloaded and cached if `pretrained_model_name_or_path` is a model ID on the Hub). |
|
""" |
|
import json |
|
|
|
use_auth_token = deprecated_kwargs.pop("use_auth_token", None) |
|
if use_auth_token is not None: |
|
warnings.warn( |
|
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning |
|
) |
|
if token is not None: |
|
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") |
|
token = use_auth_token |
|
|
|
if not os.path.isfile(index_filename): |
|
raise ValueError(f"Can't find a checkpoint index ({index_filename}) in {pretrained_model_name_or_path}.") |
|
|
|
with open(index_filename, "r") as f: |
|
index = json.loads(f.read()) |
|
|
|
shard_filenames = sorted(set(index["weight_map"].values())) |
|
sharded_metadata = index["metadata"] |
|
sharded_metadata["all_checkpoint_keys"] = list(index["weight_map"].keys()) |
|
sharded_metadata["weight_map"] = index["weight_map"].copy() |
|
|
|
|
|
if os.path.isdir(pretrained_model_name_or_path): |
|
shard_filenames = [os.path.join(pretrained_model_name_or_path, subfolder, f) for f in shard_filenames] |
|
return shard_filenames, sharded_metadata |
|
|
|
|
|
cached_filenames = [] |
|
|
|
|
|
last_shard = try_to_load_from_cache( |
|
pretrained_model_name_or_path, shard_filenames[-1], cache_dir=cache_dir, revision=_commit_hash |
|
) |
|
show_progress_bar = last_shard is None or force_download |
|
for shard_filename in tqdm(shard_filenames, desc="Downloading shards", disable=not show_progress_bar): |
|
try: |
|
|
|
cached_filename = cached_file( |
|
pretrained_model_name_or_path, |
|
shard_filename, |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
proxies=proxies, |
|
resume_download=resume_download, |
|
local_files_only=local_files_only, |
|
token=token, |
|
user_agent=user_agent, |
|
revision=revision, |
|
subfolder=subfolder, |
|
_commit_hash=_commit_hash, |
|
) |
|
|
|
|
|
except EntryNotFoundError: |
|
raise EnvironmentError( |
|
f"{pretrained_model_name_or_path} does not appear to have a file named {shard_filename} which is " |
|
"required according to the checkpoint index." |
|
) |
|
except HTTPError: |
|
raise EnvironmentError( |
|
f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load {shard_filename}. You should try" |
|
" again after checking your internet connection." |
|
) |
|
|
|
cached_filenames.append(cached_filename) |
|
|
|
return cached_filenames, sharded_metadata |
|
|
|
|
|
|
|
|
|
|
|
def get_all_cached_files(cache_dir=None): |
|
""" |
|
Returns a list for all files cached with appropriate metadata. |
|
""" |
|
if cache_dir is None: |
|
cache_dir = TRANSFORMERS_CACHE |
|
else: |
|
cache_dir = str(cache_dir) |
|
if not os.path.isdir(cache_dir): |
|
return [] |
|
|
|
cached_files = [] |
|
for file in os.listdir(cache_dir): |
|
meta_path = os.path.join(cache_dir, f"{file}.json") |
|
if not os.path.isfile(meta_path): |
|
continue |
|
|
|
with open(meta_path, encoding="utf-8") as meta_file: |
|
metadata = json.load(meta_file) |
|
url = metadata["url"] |
|
etag = metadata["etag"].replace('"', "") |
|
cached_files.append({"file": file, "url": url, "etag": etag}) |
|
|
|
return cached_files |
|
|
|
|
|
def extract_info_from_url(url): |
|
""" |
|
Extract repo_name, revision and filename from an url. |
|
""" |
|
search = re.search(r"^https://huggingface\.co/(.*)/resolve/([^/]*)/(.*)$", url) |
|
if search is None: |
|
return None |
|
repo, revision, filename = search.groups() |
|
cache_repo = "--".join(["models"] + repo.split("/")) |
|
return {"repo": cache_repo, "revision": revision, "filename": filename} |
|
|
|
|
|
def clean_files_for(file): |
|
""" |
|
Remove, if they exist, file, file.json and file.lock |
|
""" |
|
for f in [file, f"{file}.json", f"{file}.lock"]: |
|
if os.path.isfile(f): |
|
os.remove(f) |
|
|
|
|
|
def move_to_new_cache(file, repo, filename, revision, etag, commit_hash): |
|
""" |
|
Move file to repo following the new huggingface hub cache organization. |
|
""" |
|
os.makedirs(repo, exist_ok=True) |
|
|
|
|
|
os.makedirs(os.path.join(repo, "refs"), exist_ok=True) |
|
if revision != commit_hash: |
|
ref_path = os.path.join(repo, "refs", revision) |
|
with open(ref_path, "w") as f: |
|
f.write(commit_hash) |
|
|
|
|
|
os.makedirs(os.path.join(repo, "blobs"), exist_ok=True) |
|
blob_path = os.path.join(repo, "blobs", etag) |
|
shutil.move(file, blob_path) |
|
|
|
|
|
os.makedirs(os.path.join(repo, "snapshots"), exist_ok=True) |
|
os.makedirs(os.path.join(repo, "snapshots", commit_hash), exist_ok=True) |
|
pointer_path = os.path.join(repo, "snapshots", commit_hash, filename) |
|
huggingface_hub.file_download._create_relative_symlink(blob_path, pointer_path) |
|
clean_files_for(file) |
|
|
|
|
|
def move_cache(cache_dir=None, new_cache_dir=None, token=None): |
|
if new_cache_dir is None: |
|
new_cache_dir = TRANSFORMERS_CACHE |
|
if cache_dir is None: |
|
|
|
old_cache = Path(TRANSFORMERS_CACHE).parent / "transformers" |
|
if os.path.isdir(str(old_cache)): |
|
cache_dir = str(old_cache) |
|
else: |
|
cache_dir = new_cache_dir |
|
cached_files = get_all_cached_files(cache_dir=cache_dir) |
|
logger.info(f"Moving {len(cached_files)} files to the new cache system") |
|
|
|
hub_metadata = {} |
|
for file_info in tqdm(cached_files): |
|
url = file_info.pop("url") |
|
if url not in hub_metadata: |
|
try: |
|
hub_metadata[url] = get_hf_file_metadata(url, token=token) |
|
except requests.HTTPError: |
|
continue |
|
|
|
etag, commit_hash = hub_metadata[url].etag, hub_metadata[url].commit_hash |
|
if etag is None or commit_hash is None: |
|
continue |
|
|
|
if file_info["etag"] != etag: |
|
|
|
clean_files_for(os.path.join(cache_dir, file_info["file"])) |
|
continue |
|
|
|
url_info = extract_info_from_url(url) |
|
if url_info is None: |
|
|
|
continue |
|
|
|
repo = os.path.join(new_cache_dir, url_info["repo"]) |
|
move_to_new_cache( |
|
file=os.path.join(cache_dir, file_info["file"]), |
|
repo=repo, |
|
filename=url_info["filename"], |
|
revision=url_info["revision"], |
|
etag=etag, |
|
commit_hash=commit_hash, |
|
) |
|
|
|
|
|
class PushInProgress: |
|
""" |
|
Internal class to keep track of a push in progress (which might contain multiple `Future` jobs). |
|
""" |
|
|
|
def __init__(self, jobs: Optional[futures.Future] = None) -> None: |
|
self.jobs = [] if jobs is None else jobs |
|
|
|
def is_done(self): |
|
return all(job.done() for job in self.jobs) |
|
|
|
def wait_until_done(self): |
|
futures.wait(self.jobs) |
|
|
|
def cancel(self) -> None: |
|
self.jobs = [ |
|
job |
|
for job in self.jobs |
|
|
|
if not (job.cancel() or job.done()) |
|
] |
|
|
|
|
|
cache_version_file = os.path.join(TRANSFORMERS_CACHE, "version.txt") |
|
if not os.path.isfile(cache_version_file): |
|
cache_version = 0 |
|
else: |
|
with open(cache_version_file) as f: |
|
try: |
|
cache_version = int(f.read()) |
|
except ValueError: |
|
cache_version = 0 |
|
|
|
cache_is_not_empty = os.path.isdir(TRANSFORMERS_CACHE) and len(os.listdir(TRANSFORMERS_CACHE)) > 0 |
|
|
|
if cache_version < 1 and cache_is_not_empty: |
|
if is_offline_mode(): |
|
logger.warning( |
|
"You are offline and the cache for model files in Transformers v4.22.0 has been updated while your local " |
|
"cache seems to be the one of a previous version. It is very likely that all your calls to any " |
|
"`from_pretrained()` method will fail. Remove the offline mode and enable internet connection to have " |
|
"your cache be updated automatically, then you can go back to offline mode." |
|
) |
|
else: |
|
logger.warning( |
|
"The cache for model files in Transformers v4.22.0 has been updated. Migrating your old cache. This is a " |
|
"one-time only operation. You can interrupt this and resume the migration later on by calling " |
|
"`transformers.utils.move_cache()`." |
|
) |
|
try: |
|
if TRANSFORMERS_CACHE != default_cache_path: |
|
|
|
move_cache(TRANSFORMERS_CACHE, TRANSFORMERS_CACHE) |
|
else: |
|
move_cache() |
|
except Exception as e: |
|
trace = "\n".join(traceback.format_tb(e.__traceback__)) |
|
logger.error( |
|
f"There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease " |
|
"file an issue at https://github.com/huggingface/transformers/issues/new/choose and copy paste this whole " |
|
"message and we will do our best to help." |
|
) |
|
|
|
if cache_version < 1: |
|
try: |
|
os.makedirs(TRANSFORMERS_CACHE, exist_ok=True) |
|
with open(cache_version_file, "w") as f: |
|
f.write("1") |
|
except Exception: |
|
logger.warning( |
|
f"There was a problem when trying to write in your cache folder ({TRANSFORMERS_CACHE}). You should set " |
|
"the environment variable TRANSFORMERS_CACHE to a writable directory." |
|
) |
|
|