File size: 53,469 Bytes
9231ab9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Hub utilities: utilities related to download and cache models
"""
import json
import os
import re
import shutil
import sys
import tempfile
import traceback
import warnings
from concurrent import futures
from pathlib import Path
from typing import Dict, List, Optional, Tuple, Union
from urllib.parse import urlparse
from uuid import uuid4

import huggingface_hub
import requests
from huggingface_hub import (
    CommitOperationAdd,
    create_branch,
    create_commit,
    create_repo,
    get_hf_file_metadata,
    hf_hub_download,
    hf_hub_url,
)
from huggingface_hub.file_download import REGEX_COMMIT_HASH, http_get
from huggingface_hub.utils import (
    EntryNotFoundError,
    GatedRepoError,
    LocalEntryNotFoundError,
    RepositoryNotFoundError,
    RevisionNotFoundError,
    build_hf_headers,
    hf_raise_for_status,
)
from requests.exceptions import HTTPError

from . import __version__, logging
from .generic import working_or_temp_dir
from .import_utils import (
    ENV_VARS_TRUE_VALUES,
    _tf_version,
    _torch_version,
    is_tf_available,
    is_torch_available,
    is_training_run_on_sagemaker,
)
from .logging import tqdm


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

_is_offline_mode = True if os.environ.get("TRANSFORMERS_OFFLINE", "0").upper() in ENV_VARS_TRUE_VALUES else False


def is_offline_mode():
    return _is_offline_mode


torch_cache_home = os.getenv("TORCH_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "torch"))
old_default_cache_path = os.path.join(torch_cache_home, "transformers")
# New default cache, shared with the Datasets library
hf_cache_home = os.path.expanduser(
    os.getenv("HF_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "huggingface"))
)
default_cache_path = os.path.join(hf_cache_home, "hub")

# Onetime move from the old location to the new one if no ENV variable has been set.
if (
    os.path.isdir(old_default_cache_path)
    and not os.path.isdir(default_cache_path)
    and "PYTORCH_PRETRAINED_BERT_CACHE" not in os.environ
    and "PYTORCH_TRANSFORMERS_CACHE" not in os.environ
    and "TRANSFORMERS_CACHE" not in os.environ
):
    logger.warning(
        "In Transformers v4.0.0, the default path to cache downloaded models changed from"
        " '~/.cache/torch/transformers' to '~/.cache/huggingface/transformers'. Since you don't seem to have"
        " overridden and '~/.cache/torch/transformers' is a directory that exists, we're moving it to"
        " '~/.cache/huggingface/transformers' to avoid redownloading models you have already in the cache. You should"
        " only see this message once."
    )
    shutil.move(old_default_cache_path, default_cache_path)

PYTORCH_PRETRAINED_BERT_CACHE = os.getenv("PYTORCH_PRETRAINED_BERT_CACHE", default_cache_path)
PYTORCH_TRANSFORMERS_CACHE = os.getenv("PYTORCH_TRANSFORMERS_CACHE", PYTORCH_PRETRAINED_BERT_CACHE)
HUGGINGFACE_HUB_CACHE = os.getenv("HUGGINGFACE_HUB_CACHE", PYTORCH_TRANSFORMERS_CACHE)
TRANSFORMERS_CACHE = os.getenv("TRANSFORMERS_CACHE", HUGGINGFACE_HUB_CACHE)
HF_MODULES_CACHE = os.getenv("HF_MODULES_CACHE", os.path.join(hf_cache_home, "modules"))
TRANSFORMERS_DYNAMIC_MODULE_NAME = "transformers_modules"
SESSION_ID = uuid4().hex
DISABLE_TELEMETRY = os.getenv("DISABLE_TELEMETRY", False) in ENV_VARS_TRUE_VALUES

S3_BUCKET_PREFIX = "https://s3.amazonaws.com/models.huggingface.co/bert"
CLOUDFRONT_DISTRIB_PREFIX = "https://cdn.huggingface.co"

_staging_mode = os.environ.get("HUGGINGFACE_CO_STAGING", "NO").upper() in ENV_VARS_TRUE_VALUES
_default_endpoint = "https://hub-ci.huggingface.co" if _staging_mode else "https://huggingface.co"

HUGGINGFACE_CO_RESOLVE_ENDPOINT = _default_endpoint
if os.environ.get("HUGGINGFACE_CO_RESOLVE_ENDPOINT", None) is not None:
    warnings.warn(
        "Using the environment variable `HUGGINGFACE_CO_RESOLVE_ENDPOINT` is deprecated and will be removed in "
        "Transformers v5. Use `HF_ENDPOINT` instead.",
        FutureWarning,
    )
    HUGGINGFACE_CO_RESOLVE_ENDPOINT = os.environ.get("HUGGINGFACE_CO_RESOLVE_ENDPOINT", None)
HUGGINGFACE_CO_RESOLVE_ENDPOINT = os.environ.get("HF_ENDPOINT", HUGGINGFACE_CO_RESOLVE_ENDPOINT)
HUGGINGFACE_CO_PREFIX = HUGGINGFACE_CO_RESOLVE_ENDPOINT + "/{model_id}/resolve/{revision}/{filename}"
HUGGINGFACE_CO_EXAMPLES_TELEMETRY = HUGGINGFACE_CO_RESOLVE_ENDPOINT + "/api/telemetry/examples"

# Return value when trying to load a file from cache but the file does not exist in the distant repo.
_CACHED_NO_EXIST = object()


def is_remote_url(url_or_filename):
    parsed = urlparse(url_or_filename)
    return parsed.scheme in ("http", "https")


def get_cached_models(cache_dir: Union[str, Path] = None) -> List[Tuple]:
    """
    Returns a list of tuples representing model binaries that are cached locally. Each tuple has shape `(model_url,
    etag, size_MB)`. Filenames in `cache_dir` are use to get the metadata for each model, only urls ending with *.bin*
    are added.

    Args:
        cache_dir (`Union[str, Path]`, *optional*):
            The cache directory to search for models within. Will default to the transformers cache if unset.

    Returns:
        List[Tuple]: List of tuples each with shape `(model_url, etag, size_MB)`
    """
    if cache_dir is None:
        cache_dir = TRANSFORMERS_CACHE
    elif isinstance(cache_dir, Path):
        cache_dir = str(cache_dir)
    if not os.path.isdir(cache_dir):
        return []

    cached_models = []
    for file in os.listdir(cache_dir):
        if file.endswith(".json"):
            meta_path = os.path.join(cache_dir, file)
            with open(meta_path, encoding="utf-8") as meta_file:
                metadata = json.load(meta_file)
                url = metadata["url"]
                etag = metadata["etag"]
                if url.endswith(".bin"):
                    size_MB = os.path.getsize(meta_path.strip(".json")) / 1e6
                    cached_models.append((url, etag, size_MB))

    return cached_models


def define_sagemaker_information():
    try:
        instance_data = requests.get(os.environ["ECS_CONTAINER_METADATA_URI"]).json()
        dlc_container_used = instance_data["Image"]
        dlc_tag = instance_data["Image"].split(":")[1]
    except Exception:
        dlc_container_used = None
        dlc_tag = None

    sagemaker_params = json.loads(os.getenv("SM_FRAMEWORK_PARAMS", "{}"))
    runs_distributed_training = True if "sagemaker_distributed_dataparallel_enabled" in sagemaker_params else False
    account_id = os.getenv("TRAINING_JOB_ARN").split(":")[4] if "TRAINING_JOB_ARN" in os.environ else None

    sagemaker_object = {
        "sm_framework": os.getenv("SM_FRAMEWORK_MODULE", None),
        "sm_region": os.getenv("AWS_REGION", None),
        "sm_number_gpu": os.getenv("SM_NUM_GPUS", 0),
        "sm_number_cpu": os.getenv("SM_NUM_CPUS", 0),
        "sm_distributed_training": runs_distributed_training,
        "sm_deep_learning_container": dlc_container_used,
        "sm_deep_learning_container_tag": dlc_tag,
        "sm_account_id": account_id,
    }
    return sagemaker_object


def http_user_agent(user_agent: Union[Dict, str, None] = None) -> str:
    """
    Formats a user-agent string with basic info about a request.
    """
    ua = f"transformers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}"
    if is_torch_available():
        ua += f"; torch/{_torch_version}"
    if is_tf_available():
        ua += f"; tensorflow/{_tf_version}"
    if DISABLE_TELEMETRY:
        return ua + "; telemetry/off"
    if is_training_run_on_sagemaker():
        ua += "; " + "; ".join(f"{k}/{v}" for k, v in define_sagemaker_information().items())
    # CI will set this value to True
    if os.environ.get("TRANSFORMERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES:
        ua += "; is_ci/true"
    if isinstance(user_agent, dict):
        ua += "; " + "; ".join(f"{k}/{v}" for k, v in user_agent.items())
    elif isinstance(user_agent, str):
        ua += "; " + user_agent
    return ua


def extract_commit_hash(resolved_file: Optional[str], commit_hash: Optional[str]):
    """
    Extracts the commit hash from a resolved filename toward a cache file.
    """
    if resolved_file is None or commit_hash is not None:
        return commit_hash
    resolved_file = str(Path(resolved_file).as_posix())
    search = re.search(r"snapshots/([^/]+)/", resolved_file)
    if search is None:
        return None
    commit_hash = search.groups()[0]
    return commit_hash if REGEX_COMMIT_HASH.match(commit_hash) else None


def try_to_load_from_cache(
    repo_id: str,
    filename: str,
    cache_dir: Union[str, Path, None] = None,
    revision: Optional[str] = None,
    repo_type: Optional[str] = None,
) -> Optional[str]:
    """
    Explores the cache to return the latest cached file for a given revision if found.

    This function will not raise any exception if the file in not cached.

    Args:
        cache_dir (`str` or `os.PathLike`):
            The folder where the cached files lie.
        repo_id (`str`):
            The ID of the repo on huggingface.co.
        filename (`str`):
            The filename to look for inside `repo_id`.
        revision (`str`, *optional*):
            The specific model version to use. Will default to `"main"` if it's not provided and no `commit_hash` is
            provided either.
        repo_type (`str`, *optional*):
            The type of the repo.

    Returns:
        `Optional[str]` or `_CACHED_NO_EXIST`:
            Will return `None` if the file was not cached. Otherwise:
            - The exact path to the cached file if it's found in the cache
            - A special value `_CACHED_NO_EXIST` if the file does not exist at the given commit hash and this fact was
              cached.
    """
    if revision is None:
        revision = "main"

    if cache_dir is None:
        cache_dir = TRANSFORMERS_CACHE

    object_id = repo_id.replace("/", "--")
    if repo_type is None:
        repo_type = "model"
    repo_cache = os.path.join(cache_dir, f"{repo_type}s--{object_id}")
    if not os.path.isdir(repo_cache):
        # No cache for this model
        return None
    for subfolder in ["refs", "snapshots"]:
        if not os.path.isdir(os.path.join(repo_cache, subfolder)):
            return None

    # Resolve refs (for instance to convert main to the associated commit sha)
    cached_refs = os.listdir(os.path.join(repo_cache, "refs"))
    if revision in cached_refs:
        with open(os.path.join(repo_cache, "refs", revision)) as f:
            revision = f.read()

    if os.path.isfile(os.path.join(repo_cache, ".no_exist", revision, filename)):
        return _CACHED_NO_EXIST

    cached_shas = os.listdir(os.path.join(repo_cache, "snapshots"))
    if revision not in cached_shas:
        # No cache for this revision and we won't try to return a random revision
        return None

    cached_file = os.path.join(repo_cache, "snapshots", revision, filename)
    return cached_file if os.path.isfile(cached_file) else None


def cached_file(
    path_or_repo_id: Union[str, os.PathLike],
    filename: str,
    cache_dir: Optional[Union[str, os.PathLike]] = None,
    force_download: bool = False,
    resume_download: bool = False,
    proxies: Optional[Dict[str, str]] = None,
    token: Optional[Union[bool, str]] = None,
    revision: Optional[str] = None,
    local_files_only: bool = False,
    subfolder: str = "",
    repo_type: Optional[str] = None,
    user_agent: Optional[Union[str, Dict[str, str]]] = None,
    _raise_exceptions_for_missing_entries: bool = True,
    _raise_exceptions_for_connection_errors: bool = True,
    _commit_hash: Optional[str] = None,
    **deprecated_kwargs,
):
    """
    Tries to locate a file in a local folder and repo, downloads and cache it if necessary.

    Args:
        path_or_repo_id (`str` or `os.PathLike`):
            This can be either:

            - a string, the *model id* of a model repo on huggingface.co.
            - a path to a *directory* potentially containing the file.
        filename (`str`):
            The name of the file to locate in `path_or_repo`.
        cache_dir (`str` or `os.PathLike`, *optional*):
            Path to a directory in which a downloaded pretrained model configuration should be cached if the standard
            cache should not be used.
        force_download (`bool`, *optional*, defaults to `False`):
            Whether or not to force to (re-)download the configuration files and override the cached versions if they
            exist.
        resume_download (`bool`, *optional*, defaults to `False`):
            Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists.
        proxies (`Dict[str, str]`, *optional*):
            A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
            'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
        token (`str` or *bool*, *optional*):
            The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
            when running `huggingface-cli login` (stored in `~/.huggingface`).
        revision (`str`, *optional*, defaults to `"main"`):
            The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
            git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
            identifier allowed by git.
        local_files_only (`bool`, *optional*, defaults to `False`):
            If `True`, will only try to load the tokenizer configuration from local files.
        subfolder (`str`, *optional*, defaults to `""`):
            In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can
            specify the folder name here.
        repo_type (`str`, *optional*):
            Specify the repo type (useful when downloading from a space for instance).

    <Tip>

    Passing `token=True` is required when you want to use a private model.

    </Tip>

    Returns:
        `Optional[str]`: Returns the resolved file (to the cache folder if downloaded from a repo).

    Examples:

    ```python
    # Download a model weight from the Hub and cache it.
    model_weights_file = cached_file("bert-base-uncased", "pytorch_model.bin")
    ```"""
    use_auth_token = deprecated_kwargs.pop("use_auth_token", None)
    if use_auth_token is not None:
        warnings.warn(
            "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
        )
        if token is not None:
            raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
        token = use_auth_token

    # Private arguments
    #     _raise_exceptions_for_missing_entries: if False, do not raise an exception for missing entries but return
    #         None.
    #     _raise_exceptions_for_connection_errors: if False, do not raise an exception for connection errors but return
    #         None.
    #     _commit_hash: passed when we are chaining several calls to various files (e.g. when loading a tokenizer or
    #         a pipeline). If files are cached for this commit hash, avoid calls to head and get from the cache.
    if is_offline_mode() and not local_files_only:
        logger.info("Offline mode: forcing local_files_only=True")
        local_files_only = True
    if subfolder is None:
        subfolder = ""

    path_or_repo_id = str(path_or_repo_id)
    full_filename = os.path.join(subfolder, filename)
    if os.path.isdir(path_or_repo_id):
        resolved_file = os.path.join(os.path.join(path_or_repo_id, subfolder), filename)
        if not os.path.isfile(resolved_file):
            if _raise_exceptions_for_missing_entries:
                raise EnvironmentError(
                    f"{path_or_repo_id} does not appear to have a file named {full_filename}. Checkout "
                    f"'https://huggingface.co/{path_or_repo_id}/{revision}' for available files."
                )
            else:
                return None
        return resolved_file

    if cache_dir is None:
        cache_dir = TRANSFORMERS_CACHE
    if isinstance(cache_dir, Path):
        cache_dir = str(cache_dir)

    if _commit_hash is not None and not force_download:
        # If the file is cached under that commit hash, we return it directly.
        resolved_file = try_to_load_from_cache(
            path_or_repo_id, full_filename, cache_dir=cache_dir, revision=_commit_hash, repo_type=repo_type
        )
        if resolved_file is not None:
            if resolved_file is not _CACHED_NO_EXIST:
                return resolved_file
            elif not _raise_exceptions_for_missing_entries:
                return None
            else:
                raise EnvironmentError(f"Could not locate {full_filename} inside {path_or_repo_id}.")

    user_agent = http_user_agent(user_agent)
    try:
        # Load from URL or cache if already cached
        resolved_file = hf_hub_download(
            path_or_repo_id,
            filename,
            subfolder=None if len(subfolder) == 0 else subfolder,
            repo_type=repo_type,
            revision=revision,
            cache_dir=cache_dir,
            user_agent=user_agent,
            force_download=force_download,
            proxies=proxies,
            resume_download=resume_download,
            token=token,
            local_files_only=local_files_only,
        )
    except GatedRepoError as e:
        raise EnvironmentError(
            "You are trying to access a gated repo.\nMake sure to request access at "
            f"https://huggingface.co/{path_or_repo_id} and pass a token having permission to this repo either "
            "by logging in with `huggingface-cli login` or by passing `token=<your_token>`."
        ) from e
    except RepositoryNotFoundError as e:
        raise EnvironmentError(
            f"{path_or_repo_id} is not a local folder and is not a valid model identifier "
            "listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a token "
            "having permission to this repo either by logging in with `huggingface-cli login` or by passing "
            "`token=<your_token>`"
        ) from e
    except RevisionNotFoundError as e:
        raise EnvironmentError(
            f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists "
            "for this model name. Check the model page at "
            f"'https://huggingface.co/{path_or_repo_id}' for available revisions."
        ) from e
    except LocalEntryNotFoundError as e:
        # We try to see if we have a cached version (not up to date):
        resolved_file = try_to_load_from_cache(path_or_repo_id, full_filename, cache_dir=cache_dir, revision=revision)
        if resolved_file is not None and resolved_file != _CACHED_NO_EXIST:
            return resolved_file
        if not _raise_exceptions_for_missing_entries or not _raise_exceptions_for_connection_errors:
            return None
        raise EnvironmentError(
            f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this file, couldn't find it in the"
            f" cached files and it looks like {path_or_repo_id} is not the path to a directory containing a file named"
            f" {full_filename}.\nCheckout your internet connection or see how to run the library in offline mode at"
            " 'https://huggingface.co/docs/transformers/installation#offline-mode'."
        ) from e
    except EntryNotFoundError as e:
        if not _raise_exceptions_for_missing_entries:
            return None
        if revision is None:
            revision = "main"
        raise EnvironmentError(
            f"{path_or_repo_id} does not appear to have a file named {full_filename}. Checkout "
            f"'https://huggingface.co/{path_or_repo_id}/{revision}' for available files."
        ) from e
    except HTTPError as err:
        # First we try to see if we have a cached version (not up to date):
        resolved_file = try_to_load_from_cache(path_or_repo_id, full_filename, cache_dir=cache_dir, revision=revision)
        if resolved_file is not None and resolved_file != _CACHED_NO_EXIST:
            return resolved_file
        if not _raise_exceptions_for_connection_errors:
            return None

        raise EnvironmentError(f"There was a specific connection error when trying to load {path_or_repo_id}:\n{err}")

    return resolved_file


def get_file_from_repo(
    path_or_repo: Union[str, os.PathLike],
    filename: str,
    cache_dir: Optional[Union[str, os.PathLike]] = None,
    force_download: bool = False,
    resume_download: bool = False,
    proxies: Optional[Dict[str, str]] = None,
    token: Optional[Union[bool, str]] = None,
    revision: Optional[str] = None,
    local_files_only: bool = False,
    subfolder: str = "",
    **deprecated_kwargs,
):
    """
    Tries to locate a file in a local folder and repo, downloads and cache it if necessary.

    Args:
        path_or_repo (`str` or `os.PathLike`):
            This can be either:

            - a string, the *model id* of a model repo on huggingface.co.
            - a path to a *directory* potentially containing the file.
        filename (`str`):
            The name of the file to locate in `path_or_repo`.
        cache_dir (`str` or `os.PathLike`, *optional*):
            Path to a directory in which a downloaded pretrained model configuration should be cached if the standard
            cache should not be used.
        force_download (`bool`, *optional*, defaults to `False`):
            Whether or not to force to (re-)download the configuration files and override the cached versions if they
            exist.
        resume_download (`bool`, *optional*, defaults to `False`):
            Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists.
        proxies (`Dict[str, str]`, *optional*):
            A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
            'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
        token (`str` or *bool*, *optional*):
            The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
            when running `huggingface-cli login` (stored in `~/.huggingface`).
        revision (`str`, *optional*, defaults to `"main"`):
            The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
            git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
            identifier allowed by git.
        local_files_only (`bool`, *optional*, defaults to `False`):
            If `True`, will only try to load the tokenizer configuration from local files.
        subfolder (`str`, *optional*, defaults to `""`):
            In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can
            specify the folder name here.

    <Tip>

    Passing `token=True` is required when you want to use a private model.

    </Tip>

    Returns:
        `Optional[str]`: Returns the resolved file (to the cache folder if downloaded from a repo) or `None` if the
        file does not exist.

    Examples:

    ```python
    # Download a tokenizer configuration from huggingface.co and cache.
    tokenizer_config = get_file_from_repo("bert-base-uncased", "tokenizer_config.json")
    # This model does not have a tokenizer config so the result will be None.
    tokenizer_config = get_file_from_repo("xlm-roberta-base", "tokenizer_config.json")
    ```"""
    use_auth_token = deprecated_kwargs.pop("use_auth_token", None)
    if use_auth_token is not None:
        warnings.warn(
            "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
        )
        if token is not None:
            raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
        token = use_auth_token

    return cached_file(
        path_or_repo_id=path_or_repo,
        filename=filename,
        cache_dir=cache_dir,
        force_download=force_download,
        resume_download=resume_download,
        proxies=proxies,
        token=token,
        revision=revision,
        local_files_only=local_files_only,
        subfolder=subfolder,
        _raise_exceptions_for_missing_entries=False,
        _raise_exceptions_for_connection_errors=False,
    )


def download_url(url, proxies=None):
    """
    Downloads a given url in a temporary file. This function is not safe to use in multiple processes. Its only use is
    for deprecated behavior allowing to download config/models with a single url instead of using the Hub.

    Args:
        url (`str`): The url of the file to download.
        proxies (`Dict[str, str]`, *optional*):
            A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
            'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.

    Returns:
        `str`: The location of the temporary file where the url was downloaded.
    """
    warnings.warn(
        f"Using `from_pretrained` with the url of a file (here {url}) is deprecated and won't be possible anymore in"
        " v5 of Transformers. You should host your file on the Hub (hf.co) instead and use the repository ID. Note"
        " that this is not compatible with the caching system (your file will be downloaded at each execution) or"
        " multiple processes (each process will download the file in a different temporary file)."
    )
    tmp_file = tempfile.mkstemp()[1]
    with open(tmp_file, "wb") as f:
        http_get(url, f, proxies=proxies)
    return tmp_file


def has_file(
    path_or_repo: Union[str, os.PathLike],
    filename: str,
    revision: Optional[str] = None,
    proxies: Optional[Dict[str, str]] = None,
    token: Optional[Union[bool, str]] = None,
    **deprecated_kwargs,
):
    """
    Checks if a repo contains a given file without downloading it. Works for remote repos and local folders.

    <Tip warning={false}>

    This function will raise an error if the repository `path_or_repo` is not valid or if `revision` does not exist for
    this repo, but will return False for regular connection errors.

    </Tip>
    """
    use_auth_token = deprecated_kwargs.pop("use_auth_token", None)
    if use_auth_token is not None:
        warnings.warn(
            "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
        )
        if token is not None:
            raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
        token = use_auth_token

    if os.path.isdir(path_or_repo):
        return os.path.isfile(os.path.join(path_or_repo, filename))

    url = hf_hub_url(path_or_repo, filename=filename, revision=revision)
    headers = build_hf_headers(token=token, user_agent=http_user_agent())

    r = requests.head(url, headers=headers, allow_redirects=False, proxies=proxies, timeout=10)
    try:
        hf_raise_for_status(r)
        return True
    except GatedRepoError as e:
        logger.error(e)
        raise EnvironmentError(
            f"{path_or_repo} is a gated repository. Make sure to request access at "
            f"https://huggingface.co/{path_or_repo} and pass a token having permission to this repo either by "
            "logging in with `huggingface-cli login` or by passing `token=<your_token>`."
        ) from e
    except RepositoryNotFoundError as e:
        logger.error(e)
        raise EnvironmentError(f"{path_or_repo} is not a local folder or a valid repository name on 'https://hf.co'.")
    except RevisionNotFoundError as e:
        logger.error(e)
        raise EnvironmentError(
            f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for this "
            f"model name. Check the model page at 'https://huggingface.co/{path_or_repo}' for available revisions."
        )
    except requests.HTTPError:
        # We return false for EntryNotFoundError (logical) as well as any connection error.
        return False


class PushToHubMixin:
    """
    A Mixin containing the functionality to push a model or tokenizer to the hub.
    """

    def _create_repo(
        self,
        repo_id: str,
        private: Optional[bool] = None,
        token: Optional[Union[bool, str]] = None,
        repo_url: Optional[str] = None,
        organization: Optional[str] = None,
    ) -> str:
        """
        Create the repo if needed, cleans up repo_id with deprecated kwargs `repo_url` and `organization`, retrieves
        the token.
        """
        if repo_url is not None:
            warnings.warn(
                "The `repo_url` argument is deprecated and will be removed in v5 of Transformers. Use `repo_id` "
                "instead."
            )
            if repo_id is not None:
                raise ValueError(
                    "`repo_id` and `repo_url` are both specified. Please set only the argument `repo_id`."
                )
            repo_id = repo_url.replace(f"{HUGGINGFACE_CO_RESOLVE_ENDPOINT}/", "")
        if organization is not None:
            warnings.warn(
                "The `organization` argument is deprecated and will be removed in v5 of Transformers. Set your "
                "organization directly in the `repo_id` passed instead (`repo_id={organization}/{model_id}`)."
            )
            if not repo_id.startswith(organization):
                if "/" in repo_id:
                    repo_id = repo_id.split("/")[-1]
                repo_id = f"{organization}/{repo_id}"

        url = create_repo(repo_id=repo_id, token=token, private=private, exist_ok=True)
        return url.repo_id

    def _get_files_timestamps(self, working_dir: Union[str, os.PathLike]):
        """
        Returns the list of files with their last modification timestamp.
        """
        return {f: os.path.getmtime(os.path.join(working_dir, f)) for f in os.listdir(working_dir)}

    def _upload_modified_files(
        self,
        working_dir: Union[str, os.PathLike],
        repo_id: str,
        files_timestamps: Dict[str, float],
        commit_message: Optional[str] = None,
        token: Optional[Union[bool, str]] = None,
        create_pr: bool = False,
        revision: str = None,
    ):
        """
        Uploads all modified files in `working_dir` to `repo_id`, based on `files_timestamps`.
        """
        if commit_message is None:
            if "Model" in self.__class__.__name__:
                commit_message = "Upload model"
            elif "Config" in self.__class__.__name__:
                commit_message = "Upload config"
            elif "Tokenizer" in self.__class__.__name__:
                commit_message = "Upload tokenizer"
            elif "FeatureExtractor" in self.__class__.__name__:
                commit_message = "Upload feature extractor"
            elif "Processor" in self.__class__.__name__:
                commit_message = "Upload processor"
            else:
                commit_message = f"Upload {self.__class__.__name__}"
        modified_files = [
            f
            for f in os.listdir(working_dir)
            if f not in files_timestamps or os.path.getmtime(os.path.join(working_dir, f)) > files_timestamps[f]
        ]

        # filter for actual files + folders at the root level
        modified_files = [
            f
            for f in modified_files
            if os.path.isfile(os.path.join(working_dir, f)) or os.path.isdir(os.path.join(working_dir, f))
        ]

        operations = []
        # upload standalone files
        for file in modified_files:
            if os.path.isdir(os.path.join(working_dir, file)):
                # go over individual files of folder
                for f in os.listdir(os.path.join(working_dir, file)):
                    operations.append(
                        CommitOperationAdd(
                            path_or_fileobj=os.path.join(working_dir, file, f), path_in_repo=os.path.join(file, f)
                        )
                    )
            else:
                operations.append(
                    CommitOperationAdd(path_or_fileobj=os.path.join(working_dir, file), path_in_repo=file)
                )

        if revision is not None:
            create_branch(repo_id=repo_id, branch=revision, token=token, exist_ok=True)

        logger.info(f"Uploading the following files to {repo_id}: {','.join(modified_files)}")
        return create_commit(
            repo_id=repo_id,
            operations=operations,
            commit_message=commit_message,
            token=token,
            create_pr=create_pr,
            revision=revision,
        )

    def push_to_hub(
        self,
        repo_id: str,
        use_temp_dir: Optional[bool] = None,
        commit_message: Optional[str] = None,
        private: Optional[bool] = None,
        token: Optional[Union[bool, str]] = None,
        max_shard_size: Optional[Union[int, str]] = "10GB",
        create_pr: bool = False,
        safe_serialization: bool = False,
        revision: str = None,
        **deprecated_kwargs,
    ) -> str:
        """
        Upload the {object_files} to the 🤗 Model Hub.

        Parameters:
            repo_id (`str`):
                The name of the repository you want to push your {object} to. It should contain your organization name
                when pushing to a given organization.
            use_temp_dir (`bool`, *optional*):
                Whether or not to use a temporary directory to store the files saved before they are pushed to the Hub.
                Will default to `True` if there is no directory named like `repo_id`, `False` otherwise.
            commit_message (`str`, *optional*):
                Message to commit while pushing. Will default to `"Upload {object}"`.
            private (`bool`, *optional*):
                Whether or not the repository created should be private.
            token (`bool` or `str`, *optional*):
                The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
                when running `huggingface-cli login` (stored in `~/.huggingface`). Will default to `True` if `repo_url`
                is not specified.
            max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`):
                Only applicable for models. The maximum size for a checkpoint before being sharded. Checkpoints shard
                will then be each of size lower than this size. If expressed as a string, needs to be digits followed
                by a unit (like `"5MB"`).
            create_pr (`bool`, *optional*, defaults to `False`):
                Whether or not to create a PR with the uploaded files or directly commit.
            safe_serialization (`bool`, *optional*, defaults to `False`):
                Whether or not to convert the model weights in safetensors format for safer serialization.
            revision (`str`, *optional*):
                Branch to push the uploaded files to.

        Examples:

        ```python
        from transformers import {object_class}

        {object} = {object_class}.from_pretrained("bert-base-cased")

        # Push the {object} to your namespace with the name "my-finetuned-bert".
        {object}.push_to_hub("my-finetuned-bert")

        # Push the {object} to an organization with the name "my-finetuned-bert".
        {object}.push_to_hub("huggingface/my-finetuned-bert")
        ```
        """
        use_auth_token = deprecated_kwargs.pop("use_auth_token", None)
        if use_auth_token is not None:
            warnings.warn(
                "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
            )
            if token is not None:
                raise ValueError(
                    "`token` and `use_auth_token` are both specified. Please set only the argument `token`."
                )
            token = use_auth_token

        repo_path_or_name = deprecated_kwargs.pop("repo_path_or_name", None)
        if repo_path_or_name is not None:
            # Should use `repo_id` instead of `repo_path_or_name`. When using `repo_path_or_name`, we try to infer
            # repo_id from the folder path, if it exists.
            warnings.warn(
                "The `repo_path_or_name` argument is deprecated and will be removed in v5 of Transformers. Use "
                "`repo_id` instead.",
                FutureWarning,
            )
            if repo_id is not None:
                raise ValueError(
                    "`repo_id` and `repo_path_or_name` are both specified. Please set only the argument `repo_id`."
                )
            if os.path.isdir(repo_path_or_name):
                # repo_path: infer repo_id from the path
                repo_id = repo_id.split(os.path.sep)[-1]
                working_dir = repo_id
            else:
                # repo_name: use it as repo_id
                repo_id = repo_path_or_name
                working_dir = repo_id.split("/")[-1]
        else:
            # Repo_id is passed correctly: infer working_dir from it
            working_dir = repo_id.split("/")[-1]

        # Deprecation warning will be sent after for repo_url and organization
        repo_url = deprecated_kwargs.pop("repo_url", None)
        organization = deprecated_kwargs.pop("organization", None)

        repo_id = self._create_repo(
            repo_id, private=private, token=token, repo_url=repo_url, organization=organization
        )

        if use_temp_dir is None:
            use_temp_dir = not os.path.isdir(working_dir)

        with working_or_temp_dir(working_dir=working_dir, use_temp_dir=use_temp_dir) as work_dir:
            files_timestamps = self._get_files_timestamps(work_dir)

            # Save all files.
            self.save_pretrained(work_dir, max_shard_size=max_shard_size, safe_serialization=safe_serialization)

            return self._upload_modified_files(
                work_dir,
                repo_id,
                files_timestamps,
                commit_message=commit_message,
                token=token,
                create_pr=create_pr,
                revision=revision,
            )


def send_example_telemetry(example_name, *example_args, framework="pytorch"):
    """
    Sends telemetry that helps tracking the examples use.

    Args:
        example_name (`str`): The name of the example.
        *example_args (dataclasses or `argparse.ArgumentParser`): The arguments to the script. This function will only
            try to extract the model and dataset name from those. Nothing else is tracked.
        framework (`str`, *optional*, defaults to `"pytorch"`): The framework for the example.
    """
    if is_offline_mode():
        return

    data = {"example": example_name, "framework": framework}
    for args in example_args:
        args_as_dict = {k: v for k, v in args.__dict__.items() if not k.startswith("_") and v is not None}
        if "model_name_or_path" in args_as_dict:
            model_name = args_as_dict["model_name_or_path"]
            # Filter out local paths
            if not os.path.isdir(model_name):
                data["model_name"] = args_as_dict["model_name_or_path"]
        if "dataset_name" in args_as_dict:
            data["dataset_name"] = args_as_dict["dataset_name"]
        elif "task_name" in args_as_dict:
            # Extract script name from the example_name
            script_name = example_name.replace("tf_", "").replace("flax_", "").replace("run_", "")
            script_name = script_name.replace("_no_trainer", "")
            data["dataset_name"] = f"{script_name}-{args_as_dict['task_name']}"

    headers = {"user-agent": http_user_agent(data)}
    try:
        r = requests.head(HUGGINGFACE_CO_EXAMPLES_TELEMETRY, headers=headers)
        r.raise_for_status()
    except Exception:
        # We don't want to error in case of connection errors of any kind.
        pass


def convert_file_size_to_int(size: Union[int, str]):
    """
    Converts a size expressed as a string with digits an unit (like `"5MB"`) to an integer (in bytes).

    Args:
        size (`int` or `str`): The size to convert. Will be directly returned if an `int`.

    Example:
    ```py
    >>> convert_file_size_to_int("1MiB")
    1048576
    ```
    """
    if isinstance(size, int):
        return size
    if size.upper().endswith("GIB"):
        return int(size[:-3]) * (2**30)
    if size.upper().endswith("MIB"):
        return int(size[:-3]) * (2**20)
    if size.upper().endswith("KIB"):
        return int(size[:-3]) * (2**10)
    if size.upper().endswith("GB"):
        int_size = int(size[:-2]) * (10**9)
        return int_size // 8 if size.endswith("b") else int_size
    if size.upper().endswith("MB"):
        int_size = int(size[:-2]) * (10**6)
        return int_size // 8 if size.endswith("b") else int_size
    if size.upper().endswith("KB"):
        int_size = int(size[:-2]) * (10**3)
        return int_size // 8 if size.endswith("b") else int_size
    raise ValueError("`size` is not in a valid format. Use an integer followed by the unit, e.g., '5GB'.")


def get_checkpoint_shard_files(
    pretrained_model_name_or_path,
    index_filename,
    cache_dir=None,
    force_download=False,
    proxies=None,
    resume_download=False,
    local_files_only=False,
    token=None,
    user_agent=None,
    revision=None,
    subfolder="",
    _commit_hash=None,
    **deprecated_kwargs,
):
    """
    For a given model:

    - download and cache all the shards of a sharded checkpoint if `pretrained_model_name_or_path` is a model ID on the
      Hub
    - returns the list of paths to all the shards, as well as some metadata.

    For the description of each arg, see [`PreTrainedModel.from_pretrained`]. `index_filename` is the full path to the
    index (downloaded and cached if `pretrained_model_name_or_path` is a model ID on the Hub).
    """
    import json

    use_auth_token = deprecated_kwargs.pop("use_auth_token", None)
    if use_auth_token is not None:
        warnings.warn(
            "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
        )
        if token is not None:
            raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
        token = use_auth_token

    if not os.path.isfile(index_filename):
        raise ValueError(f"Can't find a checkpoint index ({index_filename}) in {pretrained_model_name_or_path}.")

    with open(index_filename, "r") as f:
        index = json.loads(f.read())

    shard_filenames = sorted(set(index["weight_map"].values()))
    sharded_metadata = index["metadata"]
    sharded_metadata["all_checkpoint_keys"] = list(index["weight_map"].keys())
    sharded_metadata["weight_map"] = index["weight_map"].copy()

    # First, let's deal with local folder.
    if os.path.isdir(pretrained_model_name_or_path):
        shard_filenames = [os.path.join(pretrained_model_name_or_path, subfolder, f) for f in shard_filenames]
        return shard_filenames, sharded_metadata

    # At this stage pretrained_model_name_or_path is a model identifier on the Hub
    cached_filenames = []
    # Check if the model is already cached or not. We only try the last checkpoint, this should cover most cases of
    # downloaded (if interrupted).
    last_shard = try_to_load_from_cache(
        pretrained_model_name_or_path, shard_filenames[-1], cache_dir=cache_dir, revision=_commit_hash
    )
    show_progress_bar = last_shard is None or force_download
    for shard_filename in tqdm(shard_filenames, desc="Downloading shards", disable=not show_progress_bar):
        try:
            # Load from URL
            cached_filename = cached_file(
                pretrained_model_name_or_path,
                shard_filename,
                cache_dir=cache_dir,
                force_download=force_download,
                proxies=proxies,
                resume_download=resume_download,
                local_files_only=local_files_only,
                token=token,
                user_agent=user_agent,
                revision=revision,
                subfolder=subfolder,
                _commit_hash=_commit_hash,
            )
        # We have already dealt with RepositoryNotFoundError and RevisionNotFoundError when getting the index, so
        # we don't have to catch them here.
        except EntryNotFoundError:
            raise EnvironmentError(
                f"{pretrained_model_name_or_path} does not appear to have a file named {shard_filename} which is "
                "required according to the checkpoint index."
            )
        except HTTPError:
            raise EnvironmentError(
                f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load {shard_filename}. You should try"
                " again after checking your internet connection."
            )

        cached_filenames.append(cached_filename)

    return cached_filenames, sharded_metadata


# All what is below is for conversion between old cache format and new cache format.


def get_all_cached_files(cache_dir=None):
    """
    Returns a list for all files cached with appropriate metadata.
    """
    if cache_dir is None:
        cache_dir = TRANSFORMERS_CACHE
    else:
        cache_dir = str(cache_dir)
    if not os.path.isdir(cache_dir):
        return []

    cached_files = []
    for file in os.listdir(cache_dir):
        meta_path = os.path.join(cache_dir, f"{file}.json")
        if not os.path.isfile(meta_path):
            continue

        with open(meta_path, encoding="utf-8") as meta_file:
            metadata = json.load(meta_file)
            url = metadata["url"]
            etag = metadata["etag"].replace('"', "")
            cached_files.append({"file": file, "url": url, "etag": etag})

    return cached_files


def extract_info_from_url(url):
    """
    Extract repo_name, revision and filename from an url.
    """
    search = re.search(r"^https://huggingface\.co/(.*)/resolve/([^/]*)/(.*)$", url)
    if search is None:
        return None
    repo, revision, filename = search.groups()
    cache_repo = "--".join(["models"] + repo.split("/"))
    return {"repo": cache_repo, "revision": revision, "filename": filename}


def clean_files_for(file):
    """
    Remove, if they exist, file, file.json and file.lock
    """
    for f in [file, f"{file}.json", f"{file}.lock"]:
        if os.path.isfile(f):
            os.remove(f)


def move_to_new_cache(file, repo, filename, revision, etag, commit_hash):
    """
    Move file to repo following the new huggingface hub cache organization.
    """
    os.makedirs(repo, exist_ok=True)

    # refs
    os.makedirs(os.path.join(repo, "refs"), exist_ok=True)
    if revision != commit_hash:
        ref_path = os.path.join(repo, "refs", revision)
        with open(ref_path, "w") as f:
            f.write(commit_hash)

    # blobs
    os.makedirs(os.path.join(repo, "blobs"), exist_ok=True)
    blob_path = os.path.join(repo, "blobs", etag)
    shutil.move(file, blob_path)

    # snapshots
    os.makedirs(os.path.join(repo, "snapshots"), exist_ok=True)
    os.makedirs(os.path.join(repo, "snapshots", commit_hash), exist_ok=True)
    pointer_path = os.path.join(repo, "snapshots", commit_hash, filename)
    huggingface_hub.file_download._create_relative_symlink(blob_path, pointer_path)
    clean_files_for(file)


def move_cache(cache_dir=None, new_cache_dir=None, token=None):
    if new_cache_dir is None:
        new_cache_dir = TRANSFORMERS_CACHE
    if cache_dir is None:
        # Migrate from old cache in .cache/huggingface/hub
        old_cache = Path(TRANSFORMERS_CACHE).parent / "transformers"
        if os.path.isdir(str(old_cache)):
            cache_dir = str(old_cache)
        else:
            cache_dir = new_cache_dir
    cached_files = get_all_cached_files(cache_dir=cache_dir)
    logger.info(f"Moving {len(cached_files)} files to the new cache system")

    hub_metadata = {}
    for file_info in tqdm(cached_files):
        url = file_info.pop("url")
        if url not in hub_metadata:
            try:
                hub_metadata[url] = get_hf_file_metadata(url, token=token)
            except requests.HTTPError:
                continue

        etag, commit_hash = hub_metadata[url].etag, hub_metadata[url].commit_hash
        if etag is None or commit_hash is None:
            continue

        if file_info["etag"] != etag:
            # Cached file is not up to date, we just throw it as a new version will be downloaded anyway.
            clean_files_for(os.path.join(cache_dir, file_info["file"]))
            continue

        url_info = extract_info_from_url(url)
        if url_info is None:
            # Not a file from huggingface.co
            continue

        repo = os.path.join(new_cache_dir, url_info["repo"])
        move_to_new_cache(
            file=os.path.join(cache_dir, file_info["file"]),
            repo=repo,
            filename=url_info["filename"],
            revision=url_info["revision"],
            etag=etag,
            commit_hash=commit_hash,
        )


class PushInProgress:
    """
    Internal class to keep track of a push in progress (which might contain multiple `Future` jobs).
    """

    def __init__(self, jobs: Optional[futures.Future] = None) -> None:
        self.jobs = [] if jobs is None else jobs

    def is_done(self):
        return all(job.done() for job in self.jobs)

    def wait_until_done(self):
        futures.wait(self.jobs)

    def cancel(self) -> None:
        self.jobs = [
            job
            for job in self.jobs
            # Cancel the job if it wasn't started yet and remove cancelled/done jobs from the list
            if not (job.cancel() or job.done())
        ]


cache_version_file = os.path.join(TRANSFORMERS_CACHE, "version.txt")
if not os.path.isfile(cache_version_file):
    cache_version = 0
else:
    with open(cache_version_file) as f:
        try:
            cache_version = int(f.read())
        except ValueError:
            cache_version = 0

cache_is_not_empty = os.path.isdir(TRANSFORMERS_CACHE) and len(os.listdir(TRANSFORMERS_CACHE)) > 0

if cache_version < 1 and cache_is_not_empty:
    if is_offline_mode():
        logger.warning(
            "You are offline and the cache for model files in Transformers v4.22.0 has been updated while your local "
            "cache seems to be the one of a previous version. It is very likely that all your calls to any "
            "`from_pretrained()` method will fail. Remove the offline mode and enable internet connection to have "
            "your cache be updated automatically, then you can go back to offline mode."
        )
    else:
        logger.warning(
            "The cache for model files in Transformers v4.22.0 has been updated. Migrating your old cache. This is a "
            "one-time only operation. You can interrupt this and resume the migration later on by calling "
            "`transformers.utils.move_cache()`."
        )
    try:
        if TRANSFORMERS_CACHE != default_cache_path:
            # Users set some env variable to customize cache storage
            move_cache(TRANSFORMERS_CACHE, TRANSFORMERS_CACHE)
        else:
            move_cache()
    except Exception as e:
        trace = "\n".join(traceback.format_tb(e.__traceback__))
        logger.error(
            f"There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease "
            "file an issue at https://github.com/huggingface/transformers/issues/new/choose and copy paste this whole "
            "message and we will do our best to help."
        )

if cache_version < 1:
    try:
        os.makedirs(TRANSFORMERS_CACHE, exist_ok=True)
        with open(cache_version_file, "w") as f:
            f.write("1")
    except Exception:
        logger.warning(
            f"There was a problem when trying to write in your cache folder ({TRANSFORMERS_CACHE}). You should set "
            "the environment variable TRANSFORMERS_CACHE to a writable directory."
        )