|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch Bros model.""" |
|
|
|
|
|
import math |
|
from dataclasses import dataclass |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss |
|
|
|
from ...activations import ACT2FN |
|
from ...modeling_outputs import ( |
|
BaseModelOutputWithPastAndCrossAttentions, |
|
BaseModelOutputWithPoolingAndCrossAttentions, |
|
TokenClassifierOutput, |
|
) |
|
from ...modeling_utils import PreTrainedModel |
|
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer |
|
from ...utils import ( |
|
ModelOutput, |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
from .configuration_bros import BrosConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CHECKPOINT_FOR_DOC = "jinho8345/bros-base-uncased" |
|
_CONFIG_FOR_DOC = "BrosConfig" |
|
|
|
BROS_PRETRAINED_MODEL_ARCHIVE_LIST = [ |
|
"jinho8345/bros-base-uncased", |
|
"jinho8345/bros-large-uncased", |
|
|
|
] |
|
|
|
BROS_START_DOCSTRING = r""" |
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`BrosConfig`]): Model configuration class with all the parameters of the model. |
|
Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
BROS_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `({0})`): |
|
Indices of input sequence tokens in the vocabulary. |
|
|
|
Indices can be obtained using [`BrosProcessor`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
|
|
bbox ('torch.FloatTensor' of shape '(batch_size, num_boxes, 4)'): |
|
Bounding box coordinates for each token in the input sequence. Each bounding box is a list of four values |
|
(x1, y1, x2, y2), where (x1, y1) is the top left corner, and (x2, y2) is the bottom right corner of the |
|
bounding box. |
|
|
|
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
|
|
bbox_first_token_mask (`torch.FloatTensor` of shape `({0})`, *optional*): |
|
Mask to indicate the first token of each bounding box. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): |
|
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, |
|
1]`: |
|
|
|
- 0 corresponds to a *sentence A* token, |
|
- 1 corresponds to a *sentence B* token. |
|
|
|
[What are token type IDs?](../glossary#token-type-ids) |
|
|
|
position_ids (`torch.LongTensor` of shape `({0})`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.max_position_embeddings - 1]`. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
|
|
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): |
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
|
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
|
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
|
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
@dataclass |
|
class BrosSpadeOutput(ModelOutput): |
|
""" |
|
Base class for outputs of token classification models. |
|
|
|
Args: |
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided) : |
|
Classification loss. |
|
initial_token_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`): |
|
Classification scores for entity initial tokens (before SoftMax). |
|
subsequent_token_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, sequence_length+1)`): |
|
Classification scores for entity sequence tokens (before SoftMax). |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
""" |
|
|
|
loss: Optional[torch.FloatTensor] = None |
|
initial_token_logits: torch.FloatTensor = None |
|
subsequent_token_logits: torch.FloatTensor = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
|
|
class BrosPositionalEmbedding1D(nn.Module): |
|
|
|
|
|
def __init__(self, config): |
|
super(BrosPositionalEmbedding1D, self).__init__() |
|
|
|
self.dim_bbox_sinusoid_emb_1d = config.dim_bbox_sinusoid_emb_1d |
|
|
|
inv_freq = 1 / ( |
|
10000 ** (torch.arange(0.0, self.dim_bbox_sinusoid_emb_1d, 2.0) / self.dim_bbox_sinusoid_emb_1d) |
|
) |
|
self.register_buffer("inv_freq", inv_freq) |
|
|
|
def forward(self, pos_seq: torch.Tensor) -> torch.Tensor: |
|
seq_size = pos_seq.size() |
|
b1, b2, b3 = seq_size |
|
sinusoid_inp = pos_seq.view(b1, b2, b3, 1) * self.inv_freq.view(1, 1, 1, self.dim_bbox_sinusoid_emb_1d // 2) |
|
pos_emb = torch.cat([sinusoid_inp.sin(), sinusoid_inp.cos()], dim=-1) |
|
return pos_emb |
|
|
|
|
|
class BrosPositionalEmbedding2D(nn.Module): |
|
def __init__(self, config): |
|
super(BrosPositionalEmbedding2D, self).__init__() |
|
|
|
self.dim_bbox = config.dim_bbox |
|
self.x_pos_emb = BrosPositionalEmbedding1D(config) |
|
self.y_pos_emb = BrosPositionalEmbedding1D(config) |
|
|
|
def forward(self, bbox: torch.Tensor) -> torch.Tensor: |
|
stack = [] |
|
for i in range(self.dim_bbox): |
|
if i % 2 == 0: |
|
stack.append(self.x_pos_emb(bbox[..., i])) |
|
else: |
|
stack.append(self.y_pos_emb(bbox[..., i])) |
|
bbox_pos_emb = torch.cat(stack, dim=-1) |
|
return bbox_pos_emb |
|
|
|
|
|
class BrosBboxEmbeddings(nn.Module): |
|
def __init__(self, config): |
|
super(BrosBboxEmbeddings, self).__init__() |
|
self.bbox_sinusoid_emb = BrosPositionalEmbedding2D(config) |
|
self.bbox_projection = nn.Linear(config.dim_bbox_sinusoid_emb_2d, config.dim_bbox_projection, bias=False) |
|
|
|
def forward(self, bbox: torch.Tensor): |
|
bbox_t = bbox.transpose(0, 1) |
|
bbox_pos = bbox_t[None, :, :, :] - bbox_t[:, None, :, :] |
|
bbox_pos_emb = self.bbox_sinusoid_emb(bbox_pos) |
|
bbox_pos_emb = self.bbox_projection(bbox_pos_emb) |
|
|
|
return bbox_pos_emb |
|
|
|
|
|
class BrosTextEmbeddings(nn.Module): |
|
"""Construct the embeddings from word, position and token_type embeddings.""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
|
|
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) |
|
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) |
|
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) |
|
|
|
|
|
|
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") |
|
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))) |
|
self.register_buffer( |
|
"token_type_ids", |
|
torch.zeros( |
|
self.position_ids.size(), |
|
dtype=torch.long, |
|
device=self.position_ids.device, |
|
), |
|
persistent=False, |
|
) |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
past_key_values_length: int = 0, |
|
) -> torch.Tensor: |
|
if input_ids is not None: |
|
input_shape = input_ids.size() |
|
else: |
|
input_shape = inputs_embeds.size()[:-1] |
|
|
|
seq_length = input_shape[1] |
|
|
|
if position_ids is None: |
|
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length] |
|
|
|
if token_type_ids is None: |
|
if hasattr(self, "token_type_ids"): |
|
buffered_token_type_ids = self.token_type_ids[:, :seq_length] |
|
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) |
|
token_type_ids = buffered_token_type_ids_expanded |
|
else: |
|
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.word_embeddings(input_ids) |
|
token_type_embeddings = self.token_type_embeddings(token_type_ids) |
|
|
|
embeddings = inputs_embeds + token_type_embeddings |
|
if self.position_embedding_type == "absolute": |
|
position_embeddings = self.position_embeddings(position_ids) |
|
embeddings += position_embeddings |
|
embeddings = self.LayerNorm(embeddings) |
|
embeddings = self.dropout(embeddings) |
|
return embeddings |
|
|
|
|
|
class BrosSelfAttention(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): |
|
raise ValueError( |
|
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " |
|
f"heads ({config.num_attention_heads})" |
|
) |
|
|
|
self.num_attention_heads = config.num_attention_heads |
|
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) |
|
self.all_head_size = self.num_attention_heads * self.attention_head_size |
|
|
|
self.query = nn.Linear(config.hidden_size, self.all_head_size) |
|
self.key = nn.Linear(config.hidden_size, self.all_head_size) |
|
self.value = nn.Linear(config.hidden_size, self.all_head_size) |
|
|
|
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) |
|
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") |
|
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": |
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) |
|
|
|
self.is_decoder = config.is_decoder |
|
|
|
def transpose_for_scores(self, x: torch.Tensor): |
|
new_x_shape = x.size()[:-1] + ( |
|
self.num_attention_heads, |
|
self.attention_head_size, |
|
) |
|
x = x.view(*new_x_shape) |
|
return x.permute(0, 2, 1, 3) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
bbox_pos_emb: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
output_attentions: Optional[torch.Tensor] = False, |
|
) -> Tuple[torch.Tensor]: |
|
mixed_query_layer = self.query(hidden_states) |
|
|
|
|
|
|
|
|
|
is_cross_attention = encoder_hidden_states is not None |
|
|
|
if is_cross_attention and past_key_value is not None: |
|
|
|
key_layer = past_key_value[0] |
|
value_layer = past_key_value[1] |
|
attention_mask = encoder_attention_mask |
|
elif is_cross_attention: |
|
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) |
|
attention_mask = encoder_attention_mask |
|
elif past_key_value is not None: |
|
key_layer = self.transpose_for_scores(self.key(hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(hidden_states)) |
|
key_layer = torch.cat([past_key_value[0], key_layer], dim=2) |
|
value_layer = torch.cat([past_key_value[1], value_layer], dim=2) |
|
else: |
|
key_layer = self.transpose_for_scores(self.key(hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(hidden_states)) |
|
|
|
query_layer = self.transpose_for_scores(mixed_query_layer) |
|
|
|
if self.is_decoder: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
past_key_value = (key_layer, value_layer) |
|
|
|
|
|
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) |
|
|
|
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": |
|
seq_length = hidden_states.size()[1] |
|
position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) |
|
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1) |
|
distance = position_ids_l - position_ids_r |
|
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) |
|
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) |
|
|
|
if self.position_embedding_type == "relative_key": |
|
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) |
|
attention_scores = attention_scores + relative_position_scores |
|
elif self.position_embedding_type == "relative_key_query": |
|
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) |
|
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) |
|
|
|
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key |
|
|
|
|
|
batch_size, n_head, seq_length, d_head = query_layer.shape |
|
bbox_pos_emb = bbox_pos_emb.view(seq_length, seq_length, batch_size, d_head) |
|
bbox_pos_emb = bbox_pos_emb.permute([2, 0, 1, 3]) |
|
bbox_pos_scores = torch.einsum("bnid,bijd->bnij", (query_layer, bbox_pos_emb)) |
|
|
|
attention_scores = attention_scores + bbox_pos_scores |
|
|
|
attention_scores = attention_scores / math.sqrt(self.attention_head_size) |
|
if attention_mask is not None: |
|
|
|
attention_scores = attention_scores + attention_mask |
|
|
|
|
|
attention_probs = nn.Softmax(dim=-1)(attention_scores) |
|
|
|
|
|
|
|
attention_probs = self.dropout(attention_probs) |
|
|
|
|
|
if head_mask is not None: |
|
attention_probs = attention_probs * head_mask |
|
|
|
context_layer = torch.matmul(attention_probs, value_layer) |
|
|
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() |
|
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) |
|
context_layer = context_layer.view(*new_context_layer_shape) |
|
|
|
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) |
|
|
|
if self.is_decoder: |
|
outputs = outputs + (past_key_value,) |
|
return outputs |
|
|
|
|
|
|
|
class BrosSelfOutput(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.LayerNorm(hidden_states + input_tensor) |
|
return hidden_states |
|
|
|
|
|
class BrosAttention(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.self = BrosSelfAttention(config) |
|
self.output = BrosSelfOutput(config) |
|
self.pruned_heads = set() |
|
|
|
def prune_heads(self, heads): |
|
if len(heads) == 0: |
|
return |
|
heads, index = find_pruneable_heads_and_indices( |
|
heads, |
|
self.self.num_attention_heads, |
|
self.self.attention_head_size, |
|
self.pruned_heads, |
|
) |
|
|
|
|
|
self.self.query = prune_linear_layer(self.self.query, index) |
|
self.self.key = prune_linear_layer(self.self.key, index) |
|
self.self.value = prune_linear_layer(self.self.value, index) |
|
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) |
|
|
|
|
|
self.self.num_attention_heads = self.self.num_attention_heads - len(heads) |
|
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads |
|
self.pruned_heads = self.pruned_heads.union(heads) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
bbox_pos_emb: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
output_attentions: Optional[bool] = False, |
|
) -> Tuple[torch.Tensor]: |
|
self_outputs = self.self( |
|
hidden_states=hidden_states, |
|
bbox_pos_emb=bbox_pos_emb, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
) |
|
attention_output = self.output(self_outputs[0], hidden_states) |
|
outputs = (attention_output,) + self_outputs[1:] |
|
return outputs |
|
|
|
|
|
|
|
class BrosIntermediate(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) |
|
if isinstance(config.hidden_act, str): |
|
self.intermediate_act_fn = ACT2FN[config.hidden_act] |
|
else: |
|
self.intermediate_act_fn = config.hidden_act |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.intermediate_act_fn(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class BrosOutput(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) |
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.LayerNorm(hidden_states + input_tensor) |
|
return hidden_states |
|
|
|
|
|
class BrosLayer(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.chunk_size_feed_forward = config.chunk_size_feed_forward |
|
self.seq_len_dim = 1 |
|
self.attention = BrosAttention(config) |
|
self.is_decoder = config.is_decoder |
|
self.add_cross_attention = config.add_cross_attention |
|
if self.add_cross_attention: |
|
if not self.is_decoder: |
|
raise Exception(f"{self} should be used as a decoder model if cross attention is added") |
|
self.crossattention = BrosAttention(config) |
|
self.intermediate = BrosIntermediate(config) |
|
self.output = BrosOutput(config) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
bbox_pos_emb: torch.Tensor, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
output_attentions: Optional[bool] = False, |
|
) -> Tuple[torch.Tensor]: |
|
|
|
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None |
|
self_attention_outputs = self.attention( |
|
hidden_states, |
|
bbox_pos_emb=bbox_pos_emb, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
past_key_value=self_attn_past_key_value, |
|
) |
|
attention_output = self_attention_outputs[0] |
|
|
|
|
|
if self.is_decoder: |
|
outputs = self_attention_outputs[1:-1] |
|
present_key_value = self_attention_outputs[-1] |
|
else: |
|
outputs = self_attention_outputs[1:] |
|
|
|
cross_attn_present_key_value = None |
|
if self.is_decoder and encoder_hidden_states is not None: |
|
if hasattr(self, "crossattention"): |
|
raise Exception( |
|
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`" |
|
) |
|
|
|
|
|
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None |
|
cross_attention_outputs = self.crossattention( |
|
attention_output, |
|
attention_mask, |
|
head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
cross_attn_past_key_value, |
|
output_attentions, |
|
) |
|
attention_output = cross_attention_outputs[0] |
|
outputs = outputs + cross_attention_outputs[1:-1] |
|
|
|
|
|
cross_attn_present_key_value = cross_attention_outputs[-1] |
|
present_key_value = present_key_value + cross_attn_present_key_value |
|
|
|
layer_output = apply_chunking_to_forward( |
|
self.feed_forward_chunk, |
|
self.chunk_size_feed_forward, |
|
self.seq_len_dim, |
|
attention_output, |
|
) |
|
outputs = (layer_output,) + outputs |
|
|
|
|
|
if self.is_decoder: |
|
outputs = outputs + (present_key_value,) |
|
|
|
return outputs |
|
|
|
def feed_forward_chunk(self, attention_output): |
|
intermediate_output = self.intermediate(attention_output) |
|
layer_output = self.output(intermediate_output, attention_output) |
|
return layer_output |
|
|
|
|
|
class BrosEncoder(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.layer = nn.ModuleList([BrosLayer(config) for _ in range(config.num_hidden_layers)]) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
bbox_pos_emb: torch.Tensor, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = False, |
|
output_hidden_states: Optional[bool] = False, |
|
return_dict: Optional[bool] = True, |
|
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: |
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attentions = () if output_attentions else None |
|
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None |
|
|
|
next_decoder_cache = () if use_cache else None |
|
for i, layer_module in enumerate(self.layer): |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
layer_head_mask = head_mask[i] if head_mask is not None else None |
|
past_key_value = past_key_values[i] if past_key_values is not None else None |
|
|
|
if getattr(self.config, "gradient_checkpointing", False) and self.training: |
|
if use_cache: |
|
logger.warning( |
|
"`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting " |
|
"`use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs, output_attentions) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(layer_module), |
|
hidden_states, |
|
bbox_pos_emb, |
|
attention_mask, |
|
layer_head_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
) |
|
else: |
|
layer_outputs = layer_module( |
|
hidden_states=hidden_states, |
|
bbox_pos_emb=bbox_pos_emb, |
|
attention_mask=attention_mask, |
|
head_mask=layer_head_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
if use_cache: |
|
next_decoder_cache += (layer_outputs[-1],) |
|
if output_attentions: |
|
all_self_attentions = all_self_attentions + (layer_outputs[1],) |
|
if self.config.add_cross_attention: |
|
all_cross_attentions = all_cross_attentions + (layer_outputs[2],) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [ |
|
hidden_states, |
|
next_decoder_cache, |
|
all_hidden_states, |
|
all_self_attentions, |
|
all_cross_attentions, |
|
] |
|
if v is not None |
|
) |
|
return BaseModelOutputWithPastAndCrossAttentions( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_decoder_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
cross_attentions=all_cross_attentions, |
|
) |
|
|
|
|
|
|
|
class BrosPooler(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.activation = nn.Tanh() |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
|
|
|
|
first_token_tensor = hidden_states[:, 0] |
|
pooled_output = self.dense(first_token_tensor) |
|
pooled_output = self.activation(pooled_output) |
|
return pooled_output |
|
|
|
|
|
class BrosRelationExtractor(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.n_relations = config.n_relations |
|
self.backbone_hidden_size = config.hidden_size |
|
self.head_hidden_size = config.hidden_size |
|
self.classifier_dropout_prob = config.classifier_dropout_prob |
|
|
|
self.drop = nn.Dropout(self.classifier_dropout_prob) |
|
self.query = nn.Linear(self.backbone_hidden_size, self.n_relations * self.head_hidden_size) |
|
|
|
self.key = nn.Linear(self.backbone_hidden_size, self.n_relations * self.head_hidden_size) |
|
|
|
self.dummy_node = nn.Parameter(torch.zeros(1, self.backbone_hidden_size)) |
|
|
|
def forward(self, query_layer: torch.Tensor, key_layer: torch.Tensor): |
|
query_layer = self.query(self.drop(query_layer)) |
|
|
|
dummy_vec = self.dummy_node.unsqueeze(0).repeat(1, key_layer.size(1), 1) |
|
key_layer = torch.cat([key_layer, dummy_vec], axis=0) |
|
key_layer = self.key(self.drop(key_layer)) |
|
|
|
query_layer = query_layer.view( |
|
query_layer.size(0), query_layer.size(1), self.n_relations, self.head_hidden_size |
|
) |
|
key_layer = key_layer.view(key_layer.size(0), key_layer.size(1), self.n_relations, self.head_hidden_size) |
|
|
|
relation_score = torch.matmul( |
|
query_layer.permute(2, 1, 0, 3), key_layer.permute(2, 1, 3, 0) |
|
) |
|
|
|
return relation_score |
|
|
|
|
|
class BrosPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = BrosConfig |
|
base_model_prefix = "bros" |
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights""" |
|
if isinstance(module, nn.Linear): |
|
|
|
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare Bros Model transformer outputting raw hidden-states without any specific head on top.", |
|
BROS_START_DOCSTRING, |
|
) |
|
class BrosModel(BrosPreTrainedModel): |
|
def __init__(self, config, add_pooling_layer=True): |
|
super().__init__(config) |
|
self.config = config |
|
|
|
self.embeddings = BrosTextEmbeddings(config) |
|
self.bbox_embeddings = BrosBboxEmbeddings(config) |
|
self.encoder = BrosEncoder(config) |
|
|
|
self.pooler = BrosPooler(config) if add_pooling_layer else None |
|
|
|
self.init_weights() |
|
|
|
def get_input_embeddings(self): |
|
return self.embeddings.word_embeddings |
|
|
|
def set_input_embeddings(self, value): |
|
self.embeddings.word_embeddings = value |
|
|
|
def _prune_heads(self, heads_to_prune): |
|
""" |
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base |
|
class PreTrainedModel |
|
""" |
|
for layer, heads in heads_to_prune.items(): |
|
self.encoder.layer[layer].attention.prune_heads(heads) |
|
|
|
@add_start_docstrings_to_model_forward(BROS_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@replace_return_docstrings(output_type=BaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
bbox: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: |
|
r""" |
|
Returns: |
|
|
|
Examples: |
|
|
|
```python |
|
>>> import torch |
|
>>> from transformers import BrosProcessor, BrosModel |
|
|
|
>>> processor = BrosProcessor.from_pretrained("jinho8345/bros-base-uncased") |
|
|
|
>>> model = BrosModel.from_pretrained("jinho8345/bros-base-uncased") |
|
|
|
>>> encoding = processor("Hello, my dog is cute", add_special_tokens=False, return_tensors="pt") |
|
>>> bbox = torch.tensor([[[0, 0, 1, 1]]]).repeat(1, encoding["input_ids"].shape[-1], 1) |
|
>>> encoding["bbox"] = bbox |
|
|
|
>>> outputs = model(**encoding) |
|
>>> last_hidden_states = outputs.last_hidden_state |
|
```""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if self.config.is_decoder: |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
else: |
|
use_cache = False |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
input_shape = input_ids.size() |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
if bbox is None: |
|
raise ValueError("You have to specify bbox") |
|
|
|
batch_size, seq_length = input_shape |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
|
|
|
|
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 |
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones(input_shape, device=device) |
|
|
|
if token_type_ids is None: |
|
if hasattr(self.embeddings, "token_type_ids"): |
|
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] |
|
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) |
|
token_type_ids = buffered_token_type_ids_expanded |
|
else: |
|
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) |
|
|
|
|
|
|
|
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device) |
|
|
|
|
|
|
|
if self.config.is_decoder and encoder_hidden_states is not None: |
|
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() |
|
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) |
|
if encoder_attention_mask is None: |
|
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) |
|
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) |
|
else: |
|
encoder_extended_attention_mask = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) |
|
|
|
embedding_output = self.embeddings( |
|
input_ids=input_ids, |
|
position_ids=position_ids, |
|
token_type_ids=token_type_ids, |
|
inputs_embeds=inputs_embeds, |
|
past_key_values_length=past_key_values_length, |
|
) |
|
|
|
|
|
if bbox.shape[-1] == 4: |
|
bbox = bbox[:, :, [0, 1, 2, 1, 2, 3, 0, 3]] |
|
scaled_bbox = bbox * self.config.bbox_scale |
|
bbox_position_embeddings = self.bbox_embeddings(scaled_bbox) |
|
|
|
encoder_outputs = self.encoder( |
|
embedding_output, |
|
bbox_pos_emb=bbox_position_embeddings, |
|
attention_mask=extended_attention_mask, |
|
head_mask=head_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_extended_attention_mask, |
|
past_key_values=past_key_values, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
sequence_output = encoder_outputs[0] |
|
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None |
|
|
|
if not return_dict: |
|
return (sequence_output, pooled_output) + encoder_outputs[1:] |
|
|
|
return BaseModelOutputWithPoolingAndCrossAttentions( |
|
last_hidden_state=sequence_output, |
|
pooler_output=pooled_output, |
|
past_key_values=encoder_outputs.past_key_values, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
cross_attentions=encoder_outputs.cross_attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
Bros Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for |
|
Named-Entity-Recognition (NER) tasks. |
|
""", |
|
BROS_START_DOCSTRING, |
|
) |
|
class BrosForTokenClassification(BrosPreTrainedModel): |
|
_keys_to_ignore_on_load_unexpected = [r"pooler"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
|
|
self.bros = BrosModel(config) |
|
classifier_dropout = ( |
|
config.classifier_dropout if hasattr(config, "classifier_dropout") else config.hidden_dropout_prob |
|
) |
|
self.dropout = nn.Dropout(classifier_dropout) |
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
self.init_weights() |
|
|
|
@add_start_docstrings_to_model_forward(BROS_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@replace_return_docstrings(output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
bbox: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
bbox_first_token_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: |
|
r""" |
|
|
|
Returns: |
|
|
|
Examples: |
|
|
|
```python |
|
>>> import torch |
|
>>> from transformers import BrosProcessor, BrosForTokenClassification |
|
|
|
>>> processor = BrosProcessor.from_pretrained("jinho8345/bros-base-uncased") |
|
|
|
>>> model = BrosForTokenClassification.from_pretrained("jinho8345/bros-base-uncased") |
|
|
|
>>> encoding = processor("Hello, my dog is cute", add_special_tokens=False, return_tensors="pt") |
|
>>> bbox = torch.tensor([[[0, 0, 1, 1]]]).repeat(1, encoding["input_ids"].shape[-1], 1) |
|
>>> encoding["bbox"] = bbox |
|
|
|
>>> outputs = model(**encoding) |
|
```""" |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.bros( |
|
input_ids, |
|
bbox=bbox, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
|
|
sequence_output = self.dropout(sequence_output) |
|
logits = self.classifier(sequence_output) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
if bbox_first_token_mask is not None: |
|
bbox_first_token_mask = bbox_first_token_mask.view(-1) |
|
loss = loss_fct( |
|
logits.view(-1, self.num_labels)[bbox_first_token_mask], labels.view(-1)[bbox_first_token_mask] |
|
) |
|
else: |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return TokenClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
Bros Model with a token classification head on top (initial_token_layers and subsequent_token_layer on top of the |
|
hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. The initial_token_classifier is used to |
|
predict the first token of each entity, and the subsequent_token_classifier is used to predict the subsequent |
|
tokens within an entity. Compared to BrosForTokenClassification, this model is more robust to serialization errors |
|
since it predicts next token from one token. |
|
""", |
|
BROS_START_DOCSTRING, |
|
) |
|
class BrosSpadeEEForTokenClassification(BrosPreTrainedModel): |
|
_keys_to_ignore_on_load_unexpected = [r"pooler"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.config = config |
|
self.num_labels = config.num_labels |
|
self.n_relations = config.n_relations |
|
self.backbone_hidden_size = config.hidden_size |
|
|
|
self.bros = BrosModel(config) |
|
classifier_dropout = ( |
|
config.classifier_dropout if hasattr(config, "classifier_dropout") else config.hidden_dropout_prob |
|
) |
|
|
|
|
|
self.initial_token_classifier = nn.Sequential( |
|
nn.Dropout(classifier_dropout), |
|
nn.Linear(config.hidden_size, config.hidden_size), |
|
nn.Dropout(classifier_dropout), |
|
nn.Linear(config.hidden_size, config.num_labels), |
|
) |
|
|
|
|
|
self.subsequent_token_classifier = BrosRelationExtractor(config) |
|
|
|
self.init_weights() |
|
|
|
@add_start_docstrings_to_model_forward(BROS_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@replace_return_docstrings(output_type=BrosSpadeOutput, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
bbox: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
bbox_first_token_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
initial_token_labels: Optional[torch.Tensor] = None, |
|
subsequent_token_labels: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], BrosSpadeOutput]: |
|
r""" |
|
Returns: |
|
|
|
Examples: |
|
|
|
```python |
|
>>> import torch |
|
>>> from transformers import BrosProcessor, BrosSpadeEEForTokenClassification |
|
|
|
>>> processor = BrosProcessor.from_pretrained("jinho8345/bros-base-uncased") |
|
|
|
>>> model = BrosSpadeEEForTokenClassification.from_pretrained("jinho8345/bros-base-uncased") |
|
|
|
>>> encoding = processor("Hello, my dog is cute", add_special_tokens=False, return_tensors="pt") |
|
>>> bbox = torch.tensor([[[0, 0, 1, 1]]]).repeat(1, encoding["input_ids"].shape[-1], 1) |
|
>>> encoding["bbox"] = bbox |
|
|
|
>>> outputs = model(**encoding) |
|
```""" |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.bros( |
|
input_ids=input_ids, |
|
bbox=bbox, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
last_hidden_states = outputs[0] |
|
last_hidden_states = last_hidden_states.transpose(0, 1).contiguous() |
|
initial_token_logits = self.initial_token_classifier(last_hidden_states).transpose(0, 1).contiguous() |
|
subsequent_token_logits = self.subsequent_token_classifier(last_hidden_states, last_hidden_states).squeeze(0) |
|
|
|
|
|
inv_attention_mask = 1 - attention_mask |
|
batch_size, max_seq_length = inv_attention_mask.shape |
|
device = inv_attention_mask.device |
|
invalid_token_mask = torch.cat([inv_attention_mask, torch.zeros([batch_size, 1]).to(device)], axis=1).bool() |
|
subsequent_token_logits = subsequent_token_logits.masked_fill( |
|
invalid_token_mask[:, None, :], torch.finfo(subsequent_token_logits.dtype).min |
|
) |
|
self_token_mask = torch.eye(max_seq_length, max_seq_length + 1).to(device).bool() |
|
subsequent_token_logits = subsequent_token_logits.masked_fill( |
|
self_token_mask[None, :, :], torch.finfo(subsequent_token_logits.dtype).min |
|
) |
|
subsequent_token_mask = attention_mask.view(-1).bool() |
|
|
|
loss = None |
|
if initial_token_labels is not None and subsequent_token_labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
|
|
|
|
initial_token_labels = initial_token_labels.view(-1) |
|
if bbox_first_token_mask is not None: |
|
bbox_first_token_mask = bbox_first_token_mask.view(-1) |
|
initial_token_loss = loss_fct( |
|
initial_token_logits.view(-1, self.num_labels)[bbox_first_token_mask], |
|
initial_token_labels[bbox_first_token_mask], |
|
) |
|
else: |
|
initial_token_loss = loss_fct(initial_token_logits.view(-1, self.num_labels), initial_token_labels) |
|
|
|
subsequent_token_labels = subsequent_token_labels.view(-1) |
|
subsequent_token_loss = loss_fct( |
|
subsequent_token_logits.view(-1, max_seq_length + 1)[subsequent_token_mask], |
|
subsequent_token_labels[subsequent_token_mask], |
|
) |
|
|
|
loss = initial_token_loss + subsequent_token_loss |
|
|
|
if not return_dict: |
|
output = (initial_token_logits, subsequent_token_logits) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return BrosSpadeOutput( |
|
loss=loss, |
|
initial_token_logits=initial_token_logits, |
|
subsequent_token_logits=subsequent_token_logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
Bros Model with a token classification head on top (a entity_linker layer on top of the hidden-states output) e.g. |
|
for Entity-Linking. The entity_linker is used to predict intra-entity links (one entity to another entity). |
|
""", |
|
BROS_START_DOCSTRING, |
|
) |
|
class BrosSpadeELForTokenClassification(BrosPreTrainedModel): |
|
_keys_to_ignore_on_load_unexpected = [r"pooler"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.config = config |
|
self.num_labels = config.num_labels |
|
self.n_relations = config.n_relations |
|
self.backbone_hidden_size = config.hidden_size |
|
|
|
self.bros = BrosModel(config) |
|
(config.classifier_dropout if hasattr(config, "classifier_dropout") else config.hidden_dropout_prob) |
|
|
|
self.entity_linker = BrosRelationExtractor(config) |
|
|
|
self.init_weights() |
|
|
|
@add_start_docstrings_to_model_forward(BROS_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@replace_return_docstrings(output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
bbox: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
bbox_first_token_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: |
|
r""" |
|
Returns: |
|
|
|
Examples: |
|
|
|
```python |
|
>>> import torch |
|
>>> from transformers import BrosProcessor, BrosSpadeELForTokenClassification |
|
|
|
>>> processor = BrosProcessor.from_pretrained("jinho8345/bros-base-uncased") |
|
|
|
>>> model = BrosSpadeELForTokenClassification.from_pretrained("jinho8345/bros-base-uncased") |
|
|
|
>>> encoding = processor("Hello, my dog is cute", add_special_tokens=False, return_tensors="pt") |
|
>>> bbox = torch.tensor([[[0, 0, 1, 1]]]).repeat(1, encoding["input_ids"].shape[-1], 1) |
|
>>> encoding["bbox"] = bbox |
|
|
|
>>> outputs = model(**encoding) |
|
```""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.bros( |
|
input_ids=input_ids, |
|
bbox=bbox, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
last_hidden_states = outputs[0] |
|
last_hidden_states = last_hidden_states.transpose(0, 1).contiguous() |
|
|
|
logits = self.entity_linker(last_hidden_states, last_hidden_states).squeeze(0) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
|
|
batch_size, max_seq_length = attention_mask.shape |
|
device = attention_mask.device |
|
|
|
self_token_mask = torch.eye(max_seq_length, max_seq_length + 1).to(device).bool() |
|
|
|
mask = bbox_first_token_mask.view(-1) |
|
bbox_first_token_mask = torch.cat( |
|
[ |
|
~bbox_first_token_mask, |
|
torch.zeros([batch_size, 1], dtype=torch.bool).to(device), |
|
], |
|
axis=1, |
|
) |
|
logits = logits.masked_fill(bbox_first_token_mask[:, None, :], torch.finfo(logits.dtype).min) |
|
logits = logits.masked_fill(self_token_mask[None, :, :], torch.finfo(logits.dtype).min) |
|
|
|
loss = loss_fct(logits.view(-1, max_seq_length + 1)[mask], labels.view(-1)[mask]) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return TokenClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|