markrodrigo's picture
Update README.md
e0e5b16 verified
|
raw
history blame
6.38 kB
---
license: llama3.1
base_model: meta-llama/Meta-Llama-3.1-8B
language:
- en
- zh
- es
pipeline_tag: text2text-generation
---
### Model Information
This model, Llama-3.1-8B-Instruct-Spatial-SQL-1.0, is an 8B, narrow use case, text to spatial SQL, lightly fine-tuned model. In general, its primary use case
is the Natural Language command adaptation of particular geographic spatial functions as normally defined in pure SQL. Data input should be a combination of an English prefix in the form of a question, and a coordinate prompt injection, likely from an active mapping system application coordinate list. Output is PostGIS spatial SQL.
There are four primary geographic functions released in version 1.0.
**Model developer**: Mark Rodrigo
**Model Architecture**: The model is a QLoRA / Supervised Fine Tuning (SFT)
### Model Input / Output Overview:
Input: Text plus coordinate prompt injection.
Output: **PostGIS spatial SQL**
NOTE: Inputs and outputs are in meters and or geographic decimal degrees WGS 84 coordinates.
| Function | Question Input | Geo Input | SQL Execution Output |
|:---------:|:---------------:|:---------:|:-------------------------:|
| Area | Area question | Polygon | Number - Area sq meters |
| Centroid | Center question | Polygon | Point |
| Buffer | Buffer distance | Point | Polygon |
| Length | Length question | Line | Number - Length in meters |
### Example Prompt / Prompt File
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
<p></p>
You are a helpful assistant. You are an expert at PostGIS and Postgresql and SQL and psql.
<p></p>
<|eot_id|><|start_header_id|>user<|end_header_id|>
\### Instruction: Write a PostGIS SQL statement for the following.
<p></p>
\### Input:
<p></p>
{input}
<p></p>
\### Response:
<|eot_id|><|start_header_id|>assistant<|end_header_id|>
### Examples
AREA
<p></p>
\### Input: What is the area for the polygon? : 'Polygon ((-3.7515154 40.3855551, -3.7514972 40.3856581, -3.7507005 40.3855767, -3.7507167 40.3854722, -3.7515154 40.3855551))'
<p></p>
\### Input: ¿Cuál es el área para el polígono? : 'Polygon ((-3.7515154 40.3855551, -3.7514972 40.3856581, -3.7507005 40.3855767, -3.7507167 40.3854722, -3.7515154 40.3855551))'
<p></p>
\### Input: 多邊形的面積是多少? : 'Polygon ((-3.7515154 40.3855551, -3.7514972 40.3856581, -3.7507005 40.3855767, -3.7507167 40.3854722, -3.7515154 40.3855551))'
<p></p>
\### Response: SELECT ST_Area(geog) As area FROM (select 'Polygon ((-3.7515154 40.3855551, -3.7514972 40.3856581, -3.7507005 40.3855767, -3.7507167 40.3854722, -3.7515154 40.3855551))' :: geography geog) subquery;
<p></p>
CENTROID
<p></p>
\### Input: What is the centroid for the polygon? : 'Polygon ((-3.6934636 40.4808785, -3.6933352 40.4811486, -3.6930125 40.4810598, -3.693141 40.4807897, -3.6934636 40.4808785))'
<p></p>
\### Input: ¿Cuál es el centroide del polígono? : 'Polygon ((-3.6934636 40.4808785, -3.6933352 40.4811486, -3.6930125 40.4810598, -3.693141 40.4807897, -3.6934636 40.4808785))'
<p></p>
### Input: 多邊形的質心是什麼? : 'Polygon ((-3.6934636 40.4808785, -3.6933352 40.4811486, -3.6930125 40.4810598, -3.693141 40.4807897, -3.6934636 40.4808785))'
<p></p>
\### Response: SELECT ST_AsText(ST_Centroid(geog)) As centroid FROM (select 'Polygon ((-3.6934636 40.4808785, -3.6933352 40.4811486, -3.6930125 40.4810598, -3.693141 40.4807897, -3.6934636 40.4808785))' :: geography geog) subquery;
<p></p>
BUFFER
<p></p>
\### Input: What is the thousand meter buffer for the following point? : 'Point(-8.7522658 41.3862664)'
<p></p>
\### Input: ¿Cuál es el buffer de mil metros para lo siguiente punto? : 'Point(-8.7522658 41.3862664)'
<p></p>
\### Input: 以下點的千米緩衝區是多少? : 'Point(-8.7522658 41.3862664)'
<p></p>
\### Response: SELECT ST_AsText(ST_Buffer(geog, 1000)) as buffer FROM (select 'Point(-8.7522658 41.3862664)' :: geography geog) subquery;
<p></p>
LENGTH
<p></p>
\### Input: How long is the line? : 'LINESTRING (-3.6976693 40.4263178, -3.6986082 40.4258729)'
<p></p>
\### Input: ¿Cuánto dura la línea? : 'LINESTRING (-3.6976693 40.4263178, -3.6986082 40.4258729)'
<p></p>
\### Input: 隊伍有多長? : 'LINESTRING (-3.6976693 40.4263178, -3.6986082 40.4258729)'
<p></p>
\### Response: SELECT ST_Length(geog) As length FROM (select 'LINESTRING (-3.6976693 40.4263178, -3.6986082 40.4258729)' :: geography geog) subquery;
<p></p>
### A Few Known Question Variation Examples
<p></p>
AREA
<p></p>
What is the area for the geometry?
<p></p>
What is the area for this polygon?
<p></p>
CENTROID
<p></p>
What is the centroid for the geometry?
<p></p>
What is the center point of the polygon?
<p></p>
BUFFER
<p></p>
What is the 100 meter buffer for the following point?
<p></p>
Buffer the following point a thousand meters.
<p></p>
What is the 1000 meter buffer for the following point?
<p></p>
LENGTH
<p></p>
What is the length of the line?
<p></p>
How long is this line?
### llama.cpp / Hyperparameter Recommendations For Inference
max context ~ 8,000 or lower
<p></p>
top k ~ 100
<p></p>
temp ~ .4-.5 or lower
### Agent Considerations
Agents are being considered as a separate project. Agents would mostly be related to pulling the coordinates from a mapping UI, and executing the SQL from responses against a PostGIS database.
### Further Reference - link this
https://postgis.net/docs/manual-3.3/PostGIS_Special_Functions_Index.html#PostGIS_GeographyFunctions
### Evaluation data
More information needed
### Training data
Custom synthetic
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-06
- train_batch_size: 1
- eval_batch_size: 1
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 100
- total_eval_batch_size: 10
- optimizer: Adam 8bit
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.5438 | 1 | 10 | 0.5247 |
| 0.4889 | 2 | 20 | 0.4494 |
| 0.4072 | 3 | 30 | 0.4051 |
### Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- peft 0.12.0
- Datasets 2.21.0
- Tokenizers 0.19.1