|
""" |
|
python generate_imagematte_with_background_video.py \ |
|
--imagematte-dir ../matting-data/Distinctions/test \ |
|
--background-dir ../matting-data/BackgroundVideos_mp4/test \ |
|
--resolution 512 \ |
|
--out-dir ../matting-data/evaluation/distinction_motion_sd/ \ |
|
--random-seed 11 |
|
|
|
Seed: |
|
10 - distinction-static |
|
11 - distinction-motion |
|
12 - adobe-static |
|
13 - adobe-motion |
|
|
|
""" |
|
|
|
import argparse |
|
import os |
|
import pims |
|
import numpy as np |
|
import random |
|
from multiprocessing import Pool |
|
from PIL import Image |
|
|
|
from tqdm.contrib.concurrent import process_map |
|
from torchvision import transforms |
|
from torchvision.transforms import functional as F |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--imagematte-dir', type=str, required=True) |
|
parser.add_argument('--background-dir', type=str, required=True) |
|
parser.add_argument('--num-samples', type=int, default=20) |
|
parser.add_argument('--num-frames', type=int, default=100) |
|
parser.add_argument('--resolution', type=int, required=True) |
|
parser.add_argument('--out-dir', type=str, required=True) |
|
parser.add_argument('--random-seed', type=int) |
|
parser.add_argument('--extension', type=str, default='.png') |
|
args = parser.parse_args() |
|
|
|
random.seed(args.random_seed) |
|
|
|
imagematte_filenames = os.listdir(os.path.join(args.imagematte_dir, 'fgr')) |
|
random.shuffle(imagematte_filenames) |
|
|
|
background_filenames = [ |
|
"0000.mp4", |
|
"0007.mp4", |
|
"0008.mp4", |
|
"0010.mp4", |
|
"0013.mp4", |
|
"0015.mp4", |
|
"0016.mp4", |
|
"0018.mp4", |
|
"0021.mp4", |
|
"0029.mp4", |
|
"0033.mp4", |
|
"0035.mp4", |
|
"0039.mp4", |
|
"0050.mp4", |
|
"0052.mp4", |
|
"0055.mp4", |
|
"0060.mp4", |
|
"0063.mp4", |
|
"0087.mp4", |
|
"0086.mp4", |
|
"0090.mp4", |
|
"0101.mp4", |
|
"0110.mp4", |
|
"0117.mp4", |
|
"0120.mp4", |
|
"0122.mp4", |
|
"0123.mp4", |
|
"0125.mp4", |
|
"0128.mp4", |
|
"0131.mp4", |
|
"0172.mp4", |
|
"0176.mp4", |
|
"0181.mp4", |
|
"0187.mp4", |
|
"0193.mp4", |
|
"0198.mp4", |
|
"0220.mp4", |
|
"0221.mp4", |
|
"0224.mp4", |
|
"0229.mp4", |
|
"0233.mp4", |
|
"0238.mp4", |
|
"0241.mp4", |
|
"0245.mp4", |
|
"0246.mp4" |
|
] |
|
|
|
random.shuffle(background_filenames) |
|
|
|
def lerp(a, b, percentage): |
|
return a * (1 - percentage) + b * percentage |
|
|
|
def motion_affine(*imgs): |
|
config = dict(degrees=(-10, 10), translate=(0.1, 0.1), |
|
scale_ranges=(0.9, 1.1), shears=(-5, 5), img_size=imgs[0][0].size) |
|
angleA, (transXA, transYA), scaleA, (shearXA, shearYA) = transforms.RandomAffine.get_params(**config) |
|
angleB, (transXB, transYB), scaleB, (shearXB, shearYB) = transforms.RandomAffine.get_params(**config) |
|
|
|
T = len(imgs[0]) |
|
variation_over_time = random.random() |
|
for t in range(T): |
|
percentage = (t / (T - 1)) * variation_over_time |
|
angle = lerp(angleA, angleB, percentage) |
|
transX = lerp(transXA, transXB, percentage) |
|
transY = lerp(transYA, transYB, percentage) |
|
scale = lerp(scaleA, scaleB, percentage) |
|
shearX = lerp(shearXA, shearXB, percentage) |
|
shearY = lerp(shearYA, shearYB, percentage) |
|
for img in imgs: |
|
img[t] = F.affine(img[t], angle, (transX, transY), scale, (shearX, shearY), F.InterpolationMode.BILINEAR) |
|
return imgs |
|
|
|
|
|
def process(i): |
|
imagematte_filename = imagematte_filenames[i % len(imagematte_filenames)] |
|
background_filename = background_filenames[i % len(background_filenames)] |
|
|
|
bgrs = pims.PyAVVideoReader(os.path.join(args.background_dir, background_filename)) |
|
|
|
out_path = os.path.join(args.out_dir, str(i).zfill(4)) |
|
os.makedirs(os.path.join(out_path, 'fgr'), exist_ok=True) |
|
os.makedirs(os.path.join(out_path, 'pha'), exist_ok=True) |
|
os.makedirs(os.path.join(out_path, 'com'), exist_ok=True) |
|
os.makedirs(os.path.join(out_path, 'bgr'), exist_ok=True) |
|
|
|
with Image.open(os.path.join(args.imagematte_dir, 'fgr', imagematte_filename)) as fgr, \ |
|
Image.open(os.path.join(args.imagematte_dir, 'pha', imagematte_filename)) as pha: |
|
fgr = fgr.convert('RGB') |
|
pha = pha.convert('L') |
|
|
|
fgrs = [fgr] * args.num_frames |
|
phas = [pha] * args.num_frames |
|
fgrs, phas = motion_affine(fgrs, phas) |
|
|
|
for t in range(args.num_frames): |
|
fgr = fgrs[t] |
|
pha = phas[t] |
|
|
|
w, h = fgr.size |
|
scale = args.resolution / max(h, w) |
|
w, h = int(w * scale), int(h * scale) |
|
|
|
fgr = fgr.resize((w, h)) |
|
pha = pha.resize((w, h)) |
|
|
|
if h < args.resolution: |
|
pt = (args.resolution - h) // 2 |
|
pb = args.resolution - h - pt |
|
else: |
|
pt = 0 |
|
pb = 0 |
|
|
|
if w < args.resolution: |
|
pl = (args.resolution - w) // 2 |
|
pr = args.resolution - w - pl |
|
else: |
|
pl = 0 |
|
pr = 0 |
|
|
|
fgr = F.pad(fgr, [pl, pt, pr, pb]) |
|
pha = F.pad(pha, [pl, pt, pr, pb]) |
|
|
|
if i // len(imagematte_filenames) % 2 == 1: |
|
fgr = fgr.transpose(Image.FLIP_LEFT_RIGHT) |
|
pha = pha.transpose(Image.FLIP_LEFT_RIGHT) |
|
|
|
fgr.save(os.path.join(out_path, 'fgr', str(t).zfill(4) + args.extension)) |
|
pha.save(os.path.join(out_path, 'pha', str(t).zfill(4) + args.extension)) |
|
|
|
bgr = Image.fromarray(bgrs[t]).convert('RGB') |
|
w, h = bgr.size |
|
scale = args.resolution / min(h, w) |
|
w, h = int(w * scale), int(h * scale) |
|
bgr = bgr.resize((w, h)) |
|
bgr = F.center_crop(bgr, (args.resolution, args.resolution)) |
|
bgr.save(os.path.join(out_path, 'bgr', str(t).zfill(4) + args.extension)) |
|
|
|
pha = np.asarray(pha).astype(float)[:, :, None] / 255 |
|
com = Image.fromarray(np.uint8(np.asarray(fgr) * pha + np.asarray(bgr) * (1 - pha))) |
|
com.save(os.path.join(out_path, 'com', str(t).zfill(4) + args.extension)) |
|
|
|
if __name__ == '__main__': |
|
r = process_map(process, range(args.num_samples), max_workers=10) |
|
|
|
|