File size: 5,994 Bytes
8b79d57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
"""
python generate_imagematte_with_background_video.py \
    --imagematte-dir ../matting-data/Distinctions/test \
    --background-dir ../matting-data/BackgroundVideos_mp4/test \
    --resolution 512 \
    --out-dir ../matting-data/evaluation/distinction_motion_sd/ \
    --random-seed 11
    
Seed:
    10 - distinction-static
    11 - distinction-motion
    12 - adobe-static
    13 - adobe-motion
    
"""

import argparse
import os
import pims
import numpy as np
import random
from multiprocessing import Pool
from PIL import Image
# from tqdm import tqdm
from tqdm.contrib.concurrent import process_map
from torchvision import transforms
from torchvision.transforms import functional as F

parser = argparse.ArgumentParser()
parser.add_argument('--imagematte-dir', type=str, required=True)
parser.add_argument('--background-dir', type=str, required=True)
parser.add_argument('--num-samples', type=int, default=20)
parser.add_argument('--num-frames', type=int, default=100)
parser.add_argument('--resolution', type=int, required=True)
parser.add_argument('--out-dir', type=str, required=True)
parser.add_argument('--random-seed', type=int)
parser.add_argument('--extension', type=str, default='.png')
args = parser.parse_args()
    
random.seed(args.random_seed)

imagematte_filenames = os.listdir(os.path.join(args.imagematte_dir, 'fgr'))
random.shuffle(imagematte_filenames)

background_filenames = [
    "0000.mp4",
    "0007.mp4",
    "0008.mp4",
    "0010.mp4",
    "0013.mp4",
    "0015.mp4",
    "0016.mp4",
    "0018.mp4",
    "0021.mp4",
    "0029.mp4",
    "0033.mp4",
    "0035.mp4",
    "0039.mp4",
    "0050.mp4",
    "0052.mp4",
    "0055.mp4",
    "0060.mp4",
    "0063.mp4",
    "0087.mp4",
    "0086.mp4",
    "0090.mp4",
    "0101.mp4",
    "0110.mp4",
    "0117.mp4",
    "0120.mp4",
    "0122.mp4",
    "0123.mp4",
    "0125.mp4",
    "0128.mp4",
    "0131.mp4",
    "0172.mp4",
    "0176.mp4",
    "0181.mp4",
    "0187.mp4",
    "0193.mp4",
    "0198.mp4",
    "0220.mp4",
    "0221.mp4",
    "0224.mp4",
    "0229.mp4",
    "0233.mp4",
    "0238.mp4",
    "0241.mp4",
    "0245.mp4",
    "0246.mp4"
]

random.shuffle(background_filenames)

def lerp(a, b, percentage):
    return a * (1 - percentage) + b * percentage

def motion_affine(*imgs):
    config = dict(degrees=(-10, 10), translate=(0.1, 0.1),
                  scale_ranges=(0.9, 1.1), shears=(-5, 5), img_size=imgs[0][0].size)
    angleA, (transXA, transYA), scaleA, (shearXA, shearYA) = transforms.RandomAffine.get_params(**config)
    angleB, (transXB, transYB), scaleB, (shearXB, shearYB) = transforms.RandomAffine.get_params(**config)

    T = len(imgs[0])
    variation_over_time = random.random()
    for t in range(T):
        percentage = (t / (T - 1)) * variation_over_time
        angle = lerp(angleA, angleB, percentage)
        transX = lerp(transXA, transXB, percentage)
        transY = lerp(transYA, transYB, percentage)
        scale = lerp(scaleA, scaleB, percentage)
        shearX = lerp(shearXA, shearXB, percentage)
        shearY = lerp(shearYA, shearYB, percentage)
        for img in imgs:
            img[t] = F.affine(img[t], angle, (transX, transY), scale, (shearX, shearY), F.InterpolationMode.BILINEAR)
    return imgs


def process(i):
    imagematte_filename = imagematte_filenames[i % len(imagematte_filenames)]
    background_filename = background_filenames[i % len(background_filenames)]
    
    bgrs = pims.PyAVVideoReader(os.path.join(args.background_dir, background_filename))
    
    out_path = os.path.join(args.out_dir, str(i).zfill(4))
    os.makedirs(os.path.join(out_path, 'fgr'), exist_ok=True)
    os.makedirs(os.path.join(out_path, 'pha'), exist_ok=True)
    os.makedirs(os.path.join(out_path, 'com'), exist_ok=True)
    os.makedirs(os.path.join(out_path, 'bgr'), exist_ok=True)

    with Image.open(os.path.join(args.imagematte_dir, 'fgr', imagematte_filename)) as fgr, \
         Image.open(os.path.join(args.imagematte_dir, 'pha', imagematte_filename)) as pha:
        fgr = fgr.convert('RGB')
        pha = pha.convert('L')
        
    fgrs = [fgr] * args.num_frames
    phas = [pha] * args.num_frames
    fgrs, phas = motion_affine(fgrs, phas)
    
    for t in range(args.num_frames):
        fgr = fgrs[t]
        pha = phas[t]
        
        w, h = fgr.size
        scale = args.resolution / max(h, w)
        w, h = int(w * scale), int(h * scale)
        
        fgr = fgr.resize((w, h))
        pha = pha.resize((w, h))
        
        if h < args.resolution:
            pt = (args.resolution - h) // 2
            pb = args.resolution - h - pt
        else:
            pt = 0
            pb = 0
            
        if w < args.resolution:
            pl = (args.resolution - w) // 2
            pr = args.resolution - w - pl
        else:
            pl = 0
            pr = 0
            
        fgr = F.pad(fgr, [pl, pt, pr, pb])
        pha = F.pad(pha, [pl, pt, pr, pb])
        
        if i // len(imagematte_filenames) % 2 == 1:
            fgr = fgr.transpose(Image.FLIP_LEFT_RIGHT)
            pha = pha.transpose(Image.FLIP_LEFT_RIGHT)
            
        fgr.save(os.path.join(out_path, 'fgr', str(t).zfill(4) + args.extension))
        pha.save(os.path.join(out_path, 'pha', str(t).zfill(4) + args.extension))
        
        bgr = Image.fromarray(bgrs[t]).convert('RGB')
        w, h = bgr.size
        scale = args.resolution / min(h, w)
        w, h = int(w * scale), int(h * scale)
        bgr = bgr.resize((w, h))
        bgr = F.center_crop(bgr, (args.resolution, args.resolution))
        bgr.save(os.path.join(out_path, 'bgr', str(t).zfill(4) + args.extension))
        
        pha = np.asarray(pha).astype(float)[:, :, None] / 255
        com = Image.fromarray(np.uint8(np.asarray(fgr) * pha + np.asarray(bgr) * (1 - pha)))
        com.save(os.path.join(out_path, 'com', str(t).zfill(4) + args.extension))
        
if __name__ == '__main__':
    r = process_map(process, range(args.num_samples), max_workers=10)