File size: 5,994 Bytes
8b79d57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
"""
python generate_imagematte_with_background_video.py \
--imagematte-dir ../matting-data/Distinctions/test \
--background-dir ../matting-data/BackgroundVideos_mp4/test \
--resolution 512 \
--out-dir ../matting-data/evaluation/distinction_motion_sd/ \
--random-seed 11
Seed:
10 - distinction-static
11 - distinction-motion
12 - adobe-static
13 - adobe-motion
"""
import argparse
import os
import pims
import numpy as np
import random
from multiprocessing import Pool
from PIL import Image
# from tqdm import tqdm
from tqdm.contrib.concurrent import process_map
from torchvision import transforms
from torchvision.transforms import functional as F
parser = argparse.ArgumentParser()
parser.add_argument('--imagematte-dir', type=str, required=True)
parser.add_argument('--background-dir', type=str, required=True)
parser.add_argument('--num-samples', type=int, default=20)
parser.add_argument('--num-frames', type=int, default=100)
parser.add_argument('--resolution', type=int, required=True)
parser.add_argument('--out-dir', type=str, required=True)
parser.add_argument('--random-seed', type=int)
parser.add_argument('--extension', type=str, default='.png')
args = parser.parse_args()
random.seed(args.random_seed)
imagematte_filenames = os.listdir(os.path.join(args.imagematte_dir, 'fgr'))
random.shuffle(imagematte_filenames)
background_filenames = [
"0000.mp4",
"0007.mp4",
"0008.mp4",
"0010.mp4",
"0013.mp4",
"0015.mp4",
"0016.mp4",
"0018.mp4",
"0021.mp4",
"0029.mp4",
"0033.mp4",
"0035.mp4",
"0039.mp4",
"0050.mp4",
"0052.mp4",
"0055.mp4",
"0060.mp4",
"0063.mp4",
"0087.mp4",
"0086.mp4",
"0090.mp4",
"0101.mp4",
"0110.mp4",
"0117.mp4",
"0120.mp4",
"0122.mp4",
"0123.mp4",
"0125.mp4",
"0128.mp4",
"0131.mp4",
"0172.mp4",
"0176.mp4",
"0181.mp4",
"0187.mp4",
"0193.mp4",
"0198.mp4",
"0220.mp4",
"0221.mp4",
"0224.mp4",
"0229.mp4",
"0233.mp4",
"0238.mp4",
"0241.mp4",
"0245.mp4",
"0246.mp4"
]
random.shuffle(background_filenames)
def lerp(a, b, percentage):
return a * (1 - percentage) + b * percentage
def motion_affine(*imgs):
config = dict(degrees=(-10, 10), translate=(0.1, 0.1),
scale_ranges=(0.9, 1.1), shears=(-5, 5), img_size=imgs[0][0].size)
angleA, (transXA, transYA), scaleA, (shearXA, shearYA) = transforms.RandomAffine.get_params(**config)
angleB, (transXB, transYB), scaleB, (shearXB, shearYB) = transforms.RandomAffine.get_params(**config)
T = len(imgs[0])
variation_over_time = random.random()
for t in range(T):
percentage = (t / (T - 1)) * variation_over_time
angle = lerp(angleA, angleB, percentage)
transX = lerp(transXA, transXB, percentage)
transY = lerp(transYA, transYB, percentage)
scale = lerp(scaleA, scaleB, percentage)
shearX = lerp(shearXA, shearXB, percentage)
shearY = lerp(shearYA, shearYB, percentage)
for img in imgs:
img[t] = F.affine(img[t], angle, (transX, transY), scale, (shearX, shearY), F.InterpolationMode.BILINEAR)
return imgs
def process(i):
imagematte_filename = imagematte_filenames[i % len(imagematte_filenames)]
background_filename = background_filenames[i % len(background_filenames)]
bgrs = pims.PyAVVideoReader(os.path.join(args.background_dir, background_filename))
out_path = os.path.join(args.out_dir, str(i).zfill(4))
os.makedirs(os.path.join(out_path, 'fgr'), exist_ok=True)
os.makedirs(os.path.join(out_path, 'pha'), exist_ok=True)
os.makedirs(os.path.join(out_path, 'com'), exist_ok=True)
os.makedirs(os.path.join(out_path, 'bgr'), exist_ok=True)
with Image.open(os.path.join(args.imagematte_dir, 'fgr', imagematte_filename)) as fgr, \
Image.open(os.path.join(args.imagematte_dir, 'pha', imagematte_filename)) as pha:
fgr = fgr.convert('RGB')
pha = pha.convert('L')
fgrs = [fgr] * args.num_frames
phas = [pha] * args.num_frames
fgrs, phas = motion_affine(fgrs, phas)
for t in range(args.num_frames):
fgr = fgrs[t]
pha = phas[t]
w, h = fgr.size
scale = args.resolution / max(h, w)
w, h = int(w * scale), int(h * scale)
fgr = fgr.resize((w, h))
pha = pha.resize((w, h))
if h < args.resolution:
pt = (args.resolution - h) // 2
pb = args.resolution - h - pt
else:
pt = 0
pb = 0
if w < args.resolution:
pl = (args.resolution - w) // 2
pr = args.resolution - w - pl
else:
pl = 0
pr = 0
fgr = F.pad(fgr, [pl, pt, pr, pb])
pha = F.pad(pha, [pl, pt, pr, pb])
if i // len(imagematte_filenames) % 2 == 1:
fgr = fgr.transpose(Image.FLIP_LEFT_RIGHT)
pha = pha.transpose(Image.FLIP_LEFT_RIGHT)
fgr.save(os.path.join(out_path, 'fgr', str(t).zfill(4) + args.extension))
pha.save(os.path.join(out_path, 'pha', str(t).zfill(4) + args.extension))
bgr = Image.fromarray(bgrs[t]).convert('RGB')
w, h = bgr.size
scale = args.resolution / min(h, w)
w, h = int(w * scale), int(h * scale)
bgr = bgr.resize((w, h))
bgr = F.center_crop(bgr, (args.resolution, args.resolution))
bgr.save(os.path.join(out_path, 'bgr', str(t).zfill(4) + args.extension))
pha = np.asarray(pha).astype(float)[:, :, None] / 255
com = Image.fromarray(np.uint8(np.asarray(fgr) * pha + np.asarray(bgr) * (1 - pha)))
com.save(os.path.join(out_path, 'com', str(t).zfill(4) + args.extension))
if __name__ == '__main__':
r = process_map(process, range(args.num_samples), max_workers=10)
|