|
# Robust Video Matting (RVM) |
|
|
|
![Teaser](/documentation/image/teaser.gif) |
|
|
|
<p align="center">English | <a href="README_zh_Hans.md">中文</a></p> |
|
|
|
Official repository for the paper [Robust High-Resolution Video Matting with Temporal Guidance](https://peterl1n.github.io/RobustVideoMatting/). RVM is specifically designed for robust human video matting. Unlike existing neural models that process frames as independent images, RVM uses a recurrent neural network to process videos with temporal memory. RVM can perform matting in real-time on any videos without additional inputs. It achieves **4K 76FPS** and **HD 104FPS** on an Nvidia GTX 1080 Ti GPU. The project was developed at [ByteDance Inc.](https://www.bytedance.com/) |
|
|
|
<br> |
|
|
|
## News |
|
|
|
* [Nov 03 2021] Fixed a bug in [train.py](https://github.com/PeterL1n/RobustVideoMatting/commit/48effc91576a9e0e7a8519f3da687c0d3522045f). |
|
* [Sep 16 2021] Code is re-released under GPL-3.0 license. |
|
* [Aug 25 2021] Source code and pretrained models are published. |
|
* [Jul 27 2021] Paper is accepted by WACV 2022. |
|
|
|
<br> |
|
|
|
## Showreel |
|
Watch the showreel video ([YouTube](https://youtu.be/Jvzltozpbpk), [Bilibili](https://www.bilibili.com/video/BV1Z3411B7g7/)) to see the model's performance. |
|
|
|
<p align="center"> |
|
<a href="https://youtu.be/Jvzltozpbpk"> |
|
<img src="documentation/image/showreel.gif"> |
|
</a> |
|
</p> |
|
|
|
All footage in the video are available in [Google Drive](https://drive.google.com/drive/folders/1VFnWwuu-YXDKG-N6vcjK_nL7YZMFapMU?usp=sharing). |
|
|
|
<br> |
|
|
|
|
|
## Demo |
|
* [Webcam Demo](https://peterl1n.github.io/RobustVideoMatting/#/demo): Run the model live in your browser. Visualize recurrent states. |
|
* [Colab Demo](https://colab.research.google.com/drive/10z-pNKRnVNsp0Lq9tH1J_XPZ7CBC_uHm?usp=sharing): Test our model on your own videos with free GPU. |
|
|
|
<br> |
|
|
|
## Download |
|
|
|
We recommend MobileNetv3 models for most use cases. ResNet50 models are the larger variant with small performance improvements. Our model is available on various inference frameworks. See [inference documentation](documentation/inference.md) for more instructions. |
|
|
|
<table> |
|
<thead> |
|
<tr> |
|
<td>Framework</td> |
|
<td>Download</td> |
|
<td>Notes</td> |
|
</tr> |
|
</thead> |
|
<tbody> |
|
<tr> |
|
<td>PyTorch</td> |
|
<td> |
|
<a href="https://github.com/PeterL1n/RobustVideoMatting/releases/download/v1.0.0/rvm_mobilenetv3.pth">rvm_mobilenetv3.pth</a><br> |
|
<a href="https://github.com/PeterL1n/RobustVideoMatting/releases/download/v1.0.0/rvm_resnet50.pth">rvm_resnet50.pth</a> |
|
</td> |
|
<td> |
|
Official weights for PyTorch. <a href="documentation/inference.md#pytorch">Doc</a> |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>TorchHub</td> |
|
<td> |
|
Nothing to Download. |
|
</td> |
|
<td> |
|
Easiest way to use our model in your PyTorch project. <a href="documentation/inference.md#torchhub">Doc</a> |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>TorchScript</td> |
|
<td> |
|
<a href="https://github.com/PeterL1n/RobustVideoMatting/releases/download/v1.0.0/rvm_mobilenetv3_fp32.torchscript">rvm_mobilenetv3_fp32.torchscript</a><br> |
|
<a href="https://github.com/PeterL1n/RobustVideoMatting/releases/download/v1.0.0/rvm_mobilenetv3_fp16.torchscript">rvm_mobilenetv3_fp16.torchscript</a><br> |
|
<a href="https://github.com/PeterL1n/RobustVideoMatting/releases/download/v1.0.0/rvm_resnet50_fp32.torchscript">rvm_resnet50_fp32.torchscript</a><br> |
|
<a href="https://github.com/PeterL1n/RobustVideoMatting/releases/download/v1.0.0/rvm_resnet50_fp16.torchscript">rvm_resnet50_fp16.torchscript</a> |
|
</td> |
|
<td> |
|
If inference on mobile, consider export int8 quantized models yourself. <a href="documentation/inference.md#torchscript">Doc</a> |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>ONNX</td> |
|
<td> |
|
<a href="https://github.com/PeterL1n/RobustVideoMatting/releases/download/v1.0.0/rvm_mobilenetv3_fp32.onnx">rvm_mobilenetv3_fp32.onnx</a><br> |
|
<a href="https://github.com/PeterL1n/RobustVideoMatting/releases/download/v1.0.0/rvm_mobilenetv3_fp16.onnx">rvm_mobilenetv3_fp16.onnx</a><br> |
|
<a href="https://github.com/PeterL1n/RobustVideoMatting/releases/download/v1.0.0/rvm_resnet50_fp32.onnx">rvm_resnet50_fp32.onnx</a><br> |
|
<a href="https://github.com/PeterL1n/RobustVideoMatting/releases/download/v1.0.0/rvm_resnet50_fp16.onnx">rvm_resnet50_fp16.onnx</a> |
|
</td> |
|
<td> |
|
Tested on ONNX Runtime with CPU and CUDA backends. Provided models use opset 12. <a href="documentation/inference.md#onnx">Doc</a>, <a href="https://github.com/PeterL1n/RobustVideoMatting/tree/onnx">Exporter</a>. |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>TensorFlow</td> |
|
<td> |
|
<a href="https://github.com/PeterL1n/RobustVideoMatting/releases/download/v1.0.0/rvm_mobilenetv3_tf.zip">rvm_mobilenetv3_tf.zip</a><br> |
|
<a href="https://github.com/PeterL1n/RobustVideoMatting/releases/download/v1.0.0/rvm_resnet50_tf.zip">rvm_resnet50_tf.zip</a> |
|
</td> |
|
<td> |
|
TensorFlow 2 SavedModel. <a href="documentation/inference.md#tensorflow">Doc</a> |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>TensorFlow.js</td> |
|
<td> |
|
<a href="https://github.com/PeterL1n/RobustVideoMatting/releases/download/v1.0.0/rvm_mobilenetv3_tfjs_int8.zip">rvm_mobilenetv3_tfjs_int8.zip</a><br> |
|
</td> |
|
<td> |
|
Run the model on the web. <a href="https://peterl1n.github.io/RobustVideoMatting/#/demo">Demo</a>, <a href="https://github.com/PeterL1n/RobustVideoMatting/tree/tfjs">Starter Code</a> |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>CoreML</td> |
|
<td> |
|
<a href="https://github.com/PeterL1n/RobustVideoMatting/releases/download/v1.0.0/rvm_mobilenetv3_1280x720_s0.375_fp16.mlmodel">rvm_mobilenetv3_1280x720_s0.375_fp16.mlmodel</a><br> |
|
<a href="https://github.com/PeterL1n/RobustVideoMatting/releases/download/v1.0.0/rvm_mobilenetv3_1280x720_s0.375_int8.mlmodel">rvm_mobilenetv3_1280x720_s0.375_int8.mlmodel</a><br> |
|
<a href="https://github.com/PeterL1n/RobustVideoMatting/releases/download/v1.0.0/rvm_mobilenetv3_1920x1080_s0.25_fp16.mlmodel">rvm_mobilenetv3_1920x1080_s0.25_fp16.mlmodel</a><br> |
|
<a href="https://github.com/PeterL1n/RobustVideoMatting/releases/download/v1.0.0/rvm_mobilenetv3_1920x1080_s0.25_int8.mlmodel">rvm_mobilenetv3_1920x1080_s0.25_int8.mlmodel</a><br> |
|
</td> |
|
<td> |
|
CoreML does not support dynamic resolution. Other resolutions can be exported yourself. Models require iOS 13+. <code>s</code> denotes <code>downsample_ratio</code>. <a href="documentation/inference.md#coreml">Doc</a>, <a href="https://github.com/PeterL1n/RobustVideoMatting/tree/coreml">Exporter</a> |
|
</td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
|
|
All models are available in [Google Drive](https://drive.google.com/drive/folders/1pBsG-SCTatv-95SnEuxmnvvlRx208VKj?usp=sharing) and [Baidu Pan](https://pan.baidu.com/s/1puPSxQqgBFOVpW4W7AolkA) (code: gym7). |
|
|
|
<br> |
|
|
|
## PyTorch Example |
|
|
|
1. Install dependencies: |
|
```sh |
|
pip install -r requirements_inference.txt |
|
``` |
|
|
|
2. Load the model: |
|
|
|
```python |
|
import torch |
|
from model import MattingNetwork |
|
|
|
model = MattingNetwork('mobilenetv3').eval().cuda() # or "resnet50" |
|
model.load_state_dict(torch.load('rvm_mobilenetv3.pth')) |
|
``` |
|
|
|
3. To convert videos, we provide a simple conversion API: |
|
|
|
```python |
|
from inference import convert_video |
|
|
|
convert_video( |
|
model, # The model, can be on any device (cpu or cuda). |
|
input_source='input.mp4', # A video file or an image sequence directory. |
|
output_type='video', # Choose "video" or "png_sequence" |
|
output_composition='com.mp4', # File path if video; directory path if png sequence. |
|
output_alpha="pha.mp4", # [Optional] Output the raw alpha prediction. |
|
output_foreground="fgr.mp4", # [Optional] Output the raw foreground prediction. |
|
output_video_mbps=4, # Output video mbps. Not needed for png sequence. |
|
downsample_ratio=None, # A hyperparameter to adjust or use None for auto. |
|
seq_chunk=12, # Process n frames at once for better parallelism. |
|
) |
|
``` |
|
|
|
4. Or write your own inference code: |
|
```python |
|
from torch.utils.data import DataLoader |
|
from torchvision.transforms import ToTensor |
|
from inference_utils import VideoReader, VideoWriter |
|
|
|
reader = VideoReader('input.mp4', transform=ToTensor()) |
|
writer = VideoWriter('output.mp4', frame_rate=30) |
|
|
|
bgr = torch.tensor([.47, 1, .6]).view(3, 1, 1).cuda() # Green background. |
|
rec = [None] * 4 # Initial recurrent states. |
|
downsample_ratio = 0.25 # Adjust based on your video. |
|
|
|
with torch.no_grad(): |
|
for src in DataLoader(reader): # RGB tensor normalized to 0 ~ 1. |
|
fgr, pha, *rec = model(src.cuda(), *rec, downsample_ratio) # Cycle the recurrent states. |
|
com = fgr * pha + bgr * (1 - pha) # Composite to green background. |
|
writer.write(com) # Write frame. |
|
``` |
|
|
|
5. The models and converter API are also available through TorchHub. |
|
|
|
```python |
|
# Load the model. |
|
model = torch.hub.load("PeterL1n/RobustVideoMatting", "mobilenetv3") # or "resnet50" |
|
|
|
# Converter API. |
|
convert_video = torch.hub.load("PeterL1n/RobustVideoMatting", "converter") |
|
``` |
|
|
|
Please see [inference documentation](documentation/inference.md) for details on `downsample_ratio` hyperparameter, more converter arguments, and more advanced usage. |
|
|
|
<br> |
|
|
|
## Training and Evaluation |
|
|
|
Please refer to the [training documentation](documentation/training.md) to train and evaluate your own model. |
|
|
|
<br> |
|
|
|
## Speed |
|
|
|
Speed is measured with `inference_speed_test.py` for reference. |
|
|
|
| GPU | dType | HD (1920x1080) | 4K (3840x2160) | |
|
| -------------- | ----- | -------------- |----------------| |
|
| RTX 3090 | FP16 | 172 FPS | 154 FPS | |
|
| RTX 2060 Super | FP16 | 134 FPS | 108 FPS | |
|
| GTX 1080 Ti | FP32 | 104 FPS | 74 FPS | |
|
|
|
* Note 1: HD uses `downsample_ratio=0.25`, 4K uses `downsample_ratio=0.125`. All tests use batch size 1 and frame chunk 1. |
|
* Note 2: GPUs before Turing architecture does not support FP16 inference, so GTX 1080 Ti uses FP32. |
|
* Note 3: We only measure tensor throughput. The provided video conversion script in this repo is expected to be much slower, because it does not utilize hardware video encoding/decoding and does not have the tensor transfer done on parallel threads. If you are interested in implementing hardware video encoding/decoding in Python, please refer to [PyNvCodec](https://github.com/NVIDIA/VideoProcessingFramework). |
|
|
|
<br> |
|
|
|
## Project Members |
|
* [Shanchuan Lin](https://www.linkedin.com/in/shanchuanlin/) |
|
* [Linjie Yang](https://sites.google.com/site/linjieyang89/) |
|
* [Imran Saleemi](https://www.linkedin.com/in/imran-saleemi/) |
|
* [Soumyadip Sengupta](https://homes.cs.washington.edu/~soumya91/) |
|
|
|
<br> |
|
|
|
## Third-Party Projects |
|
|
|
* [NCNN C++ Android](https://github.com/FeiGeChuanShu/ncnn_Android_RobustVideoMatting) ([@FeiGeChuanShu](https://github.com/FeiGeChuanShu)) |
|
* [lite.ai.toolkit](https://github.com/DefTruth/RobustVideoMatting.lite.ai.toolkit) ([@DefTruth](https://github.com/DefTruth)) |
|
* [Gradio Web Demo](https://huggingface.co/spaces/akhaliq/Robust-Video-Matting) ([@AK391](https://github.com/AK391)) |
|
* [Unity Engine demo with NatML](https://hub.natml.ai/@natsuite/robust-video-matting) ([@natsuite](https://github.com/natsuite)) |
|
* [MNN C++ Demo](https://github.com/DefTruth/lite.ai.toolkit/blob/main/lite/mnn/cv/mnn_rvm.cpp) ([@DefTruth](https://github.com/DefTruth)) |
|
* [TNN C++ Demo](https://github.com/DefTruth/lite.ai.toolkit/blob/main/lite/tnn/cv/tnn_rvm.cpp) ([@DefTruth](https://github.com/DefTruth)) |
|
|
|
|