mambazjp's picture
Upload 82 files
8870024
raw
history blame
11.9 kB
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
import cv2, pdb
import h5py
import argparse
import numpy as np
import chumpy as ch
import cPickle as pkl
from opendr.camera import ProjectPoints
from opendr.lighting import LambertianPointLight
from opendr.renderer import ColoredRenderer
from opendr.filters import gaussian_pyramid
from util import im
from util.logger import log
from lib.frame import FrameData
from models.smpl import Smpl, copy_smpl, joints_coco
from models.bodyparts import faces_no_hands
from vendor.smplify.sphere_collisions import SphereCollisions
from vendor.smplify.robustifiers import GMOf
def get_cb(viz_rn, f):
if viz_rn is not None:
viz_rn.set(v=f.smpl, background_image=np.dstack((f.mask, f.mask, f.mask)))
viz_rn.vc.set(v=f.smpl)
def cb(_):
debug = np.array(viz_rn.r)
for j in f.J_proj.r:
cv2.circle(debug, tuple(j.astype(np.int)), 3, (0, 0, 0.8), -1)
for j in f.keypoints[:, :2]:
cv2.circle(debug, tuple(j.astype(np.int)), 3, (0, 0.8, 0), -1)
im.show(debug, id='pose', waittime=1)
else:
cb = None
return cb
def collision_obj(smpl, regs):
sp = SphereCollisions(pose=smpl.pose, betas=smpl.betas, model=smpl, regs=regs)
sp.no_hands = True
return sp
def pose_prior_obj(smpl, prior_data):
return (smpl.pose[3:] - prior_data['mean']).reshape(1, -1).dot(prior_data['prec'])
def height_predictor(b2m, betas):
return ch.hstack((betas.reshape(1, -1), [[1]])).dot(b2m)
def init(frames, body_height, b2m, viz_rn):
betas = frames[0].smpl.betas
E_height = None
if body_height is not None:
E_height = height_predictor(b2m, betas) - body_height * 1000.
# first get a rough pose for all frames individually
for i, f in enumerate(frames):
if np.sum(f.keypoints[[0, 2, 5, 8, 11], 2]) > 3.:
if f.keypoints[2, 0] > f.keypoints[5, 0]:
f.smpl.pose[0] = 0
f.smpl.pose[2] = np.pi
# pdb.set_trace()
E_init = {
'init_pose_{}'.format(i): f.pose_obj[[0, 2, 5, 8, 11]]
}
x0 = [f.smpl.trans, f.smpl.pose[:3]]
if E_height is not None and i == 0:
E_init['height'] = E_height
E_init['betas'] = betas
x0.append(betas)
ch.minimize(
E_init,
x0,
method='dogleg',
options={
'e_3': .01,
},
callback=get_cb(viz_rn, f)
)
weights = zip(
[5., 4.5, 4.],
[5., 4., 3.]
)
E_betas = betas - betas.r
for w_prior, w_betas in weights:
x0 = [betas]
E = {
'betas': E_betas * w_betas,
}
if E_height is not None:
E['height'] = E_height
for i, f in enumerate(frames):
if np.sum(f.keypoints[[0, 2, 5, 8, 11], 2]) > 3.:
x0.extend([f.smpl.pose[range(21) + range(27, 30) + range(36, 60)], f.smpl.trans])
E['pose_{}'.format(i)] = f.pose_obj
E['prior_{}'.format(i)] = f.pose_prior_obj * w_prior
ch.minimize(
E,
x0,
method='dogleg',
options={
'e_3': .01,
},
callback=get_cb(viz_rn, frames[0])
)
def reinit_frame(frame, null_pose, nohands, viz_rn):
if (np.sum(frame.pose_obj.r ** 2) > 625 or np.sum(frame.pose_prior_obj.r ** 2) > 75)\
and np.sum(frame.keypoints[[0, 2, 5, 8, 11], 2]) > 3.:
log.info('Tracking error too large. Re-init frame...')
x0 = [frame.smpl.pose[:3], frame.smpl.trans]
frame.smpl.pose[3:] = null_pose
if frame.keypoints[2, 0] > frame.keypoints[5, 0]:
frame.smpl.pose[0] = 0
frame.smpl.pose[2] = np.pi
E = {
'init_pose': frame.pose_obj[[0, 2, 5, 8, 11]],
}
ch.minimize(
E,
x0,
method='dogleg',
options={
'e_3': .1,
},
callback=get_cb(viz_rn, frame)
)
E = {
'pose': GMOf(frame.pose_obj, 100),
'prior': frame.pose_prior_obj * 8.,
}
x0 = [frame.smpl.trans]
if nohands:
x0.append(frame.smpl.pose[range(21) + range(27, 30) + range(36, 60)])
else:
x0.append(frame.smpl.pose[range(21) + range(27, 30) + range(36, 72)])
ch.minimize(
E,
x0,
method='dogleg',
options={
'e_3': .01,
},
callback=get_cb(viz_rn, frame)
)
def fit_pose(frame, last_smpl, frustum, nohands, viz_rn):
if nohands:
faces = faces_no_hands(frame.smpl.f)
else:
faces = frame.smpl.f
dst_type = cv2.cv.CV_DIST_L2 if cv2.__version__[0] == '2' else cv2.DIST_L2
dist_i = cv2.distanceTransform(np.uint8(frame.mask * 255), dst_type, 5) - 1
dist_i[dist_i < 0] = 0
dist_i[dist_i > 50] = 50
dist_o = cv2.distanceTransform(255 - np.uint8(frame.mask * 255), dst_type, 5)
dist_o[dist_o > 50] = 50
rn_m = ColoredRenderer(camera=frame.camera, v=frame.smpl, f=faces, vc=np.ones_like(frame.smpl), frustum=frustum,
bgcolor=0, num_channels=1)
E = {
'mask': gaussian_pyramid(rn_m * dist_o * 100. + (1 - rn_m) * dist_i, n_levels=4, normalization='size') * 80.,
'2dpose': GMOf(frame.pose_obj, 100),
'prior': frame.pose_prior_obj * 4.,
'sp': frame.collision_obj * 1e3,
}
if last_smpl is not None:
E['last_pose'] = GMOf(frame.smpl.pose - last_smpl.pose, 0.05) * 50.
E['last_trans'] = GMOf(frame.smpl.trans - last_smpl.trans, 0.05) * 50.
if nohands:
x0 = [frame.smpl.pose[range(21) + range(27, 30) + range(36, 60)], frame.smpl.trans]
else:
x0 = [frame.smpl.pose[range(21) + range(27, 30) + range(36, 72)], frame.smpl.trans]
ch.minimize(
E,
x0,
method='dogleg',
options={
'e_3': .01,
},
callback=get_cb(viz_rn, frame)
)
def main(keypoint_file, masks_file, camera_file, out, model_file, prior_file, resize,
body_height, nohands, display):
# load data
with open(model_file, 'rb') as fp:
model_data = pkl.load(fp)
with open(camera_file, 'rb') as fp:
camera_data = pkl.load(fp)
with open(prior_file, 'rb') as fp:
prior_data = pkl.load(fp)
if 'basicModel_f' in model_file:
regs = np.load('vendor/smplify/models/regressors_locked_normalized_female.npz')
b2m = np.load('assets/b2m_f.npy')
else:
regs = np.load('vendor/smplify/models/regressors_locked_normalized_male.npz')
b2m = np.load('assets/b2m_m.npy')
keypoints = h5py.File(keypoint_file, 'r')['keypoints']
masks = h5py.File(masks_file, 'r')['masks']
num_frames = masks.shape[0]
# init
base_smpl = Smpl(model_data)
base_smpl.trans[:] = np.array([0, 0, 3])
base_smpl.pose[0] = np.pi
base_smpl.pose[3:] = prior_data['mean']
camera = ProjectPoints(t=np.zeros(3), rt=np.zeros(3), c=camera_data['camera_c'] * resize,
f=camera_data['camera_f'] * resize, k=camera_data['camera_k'], v=base_smpl)
frustum = {'near': 0.1, 'far': 1000.,
'width': int(camera_data['width'] * resize), 'height': int(camera_data['height'] * resize)}
if display:
debug_cam = ProjectPoints(v=base_smpl, t=camera.t, rt=camera.rt, c=camera.c, f=camera.f, k=camera.k)
debug_light = LambertianPointLight(f=base_smpl.f, v=base_smpl, num_verts=len(base_smpl), light_pos=np.zeros(3),
vc=np.ones(3), light_color=np.ones(3))
debug_rn = ColoredRenderer(camera=debug_cam, v=base_smpl, f=base_smpl.f, vc=debug_light, frustum=frustum)
else:
debug_rn = None
# generic frame loading function
def create_frame(i, smpl, copy=True):
f = FrameData()
f.smpl = copy_smpl(smpl, model_data) if copy else smpl
f.camera = ProjectPoints(v=f.smpl, t=camera.t, rt=camera.rt, c=camera.c, f=camera.f, k=camera.k)
f.keypoints = np.array(keypoints[i]).reshape(-1, 3) * np.array([resize, resize, 1])
f.J = joints_coco(f.smpl)
f.J_proj = ProjectPoints(v=f.J, t=camera.t, rt=camera.rt, c=camera.c, f=camera.f, k=camera.k)
f.mask = cv2.resize(np.array(masks[i], dtype=np.float32), (0, 0),
fx=resize, fy=resize, interpolation=cv2.INTER_NEAREST)
f.collision_obj = collision_obj(f.smpl, regs)
f.pose_prior_obj = pose_prior_obj(f.smpl, prior_data)
f.pose_obj = (f.J_proj - f.keypoints[:, :2]) * f.keypoints[:, 2].reshape(-1, 1)
return f
base_frame = create_frame(0, base_smpl, copy=False)
# get betas from 5 frames
log.info('Initial fit')
num_init = 5
indices_init = np.ceil(np.arange(num_init) * num_frames * 1. / num_init).astype(np.int)
init_frames = [base_frame]
for i in indices_init[1:]:
init_frames.append(create_frame(i, base_smpl))
init(init_frames, body_height, b2m, debug_rn)
# get pose frame by frame
with h5py.File(out, 'w') as fp:
last_smpl = None
poses_dset = fp.create_dataset("pose", (num_frames, 72), 'f', chunks=True, compression="lzf")
trans_dset = fp.create_dataset("trans", (num_frames, 3), 'f', chunks=True, compression="lzf")
betas_dset = fp.create_dataset("betas", (10,), 'f', chunks=True, compression="lzf")
for i in xrange(num_frames):
if i == 0:
current_frame = base_frame
else:
current_frame = create_frame(i, last_smpl)
log.info('Fit frame {}'.format(i))
# re-init if necessary
reinit_frame(current_frame, prior_data['mean'], nohands, debug_rn)
# final fit
fit_pose(current_frame, last_smpl, frustum, nohands, debug_rn)
poses_dset[i] = current_frame.smpl.pose.r
trans_dset[i] = current_frame.smpl.trans.r
if i == 0:
betas_dset[:] = current_frame.smpl.betas.r
last_smpl = current_frame.smpl
log.info('Done.')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'keypoint_file',
type=str,
help="File that contains 2D keypoint detections")
parser.add_argument(
'masks_file',
type=str,
help="File that contains segmentations")
parser.add_argument(
'camera',
type=str,
help="pkl file that contains camera settings")
parser.add_argument(
'out',
type=str,
help="Out file path")
parser.add_argument(
'--model', '-m',
default='vendor/smpl/models/basicmodel_m_lbs_10_207_0_v1.1.0.pkl',
help='Path to SMPL model')
parser.add_argument(
'--prior', '-p',
default='assets/prior_a_pose.pkl',
help='Path to pose prior')
parser.add_argument(
'--resize', '-r', default=0.5, type=float,
help="Resize factor")
parser.add_argument(
'--body_height', '-bh', default=None, type=float,
help="Height of the subject in meters (optional)")
parser.add_argument(
'--nohands', '-nh',
action='store_true',
help="Exclude hands from optimization")
parser.add_argument(
'--display', '-d',
action='store_true',
help="Enable visualization")
args = parser.parse_args()
main(args.keypoint_file, args.masks_file, args.camera, args.out, args.model, args.prior, args.resize,
args.body_height, args.nohands, args.display)