File size: 11,926 Bytes
8870024 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
import cv2, pdb
import h5py
import argparse
import numpy as np
import chumpy as ch
import cPickle as pkl
from opendr.camera import ProjectPoints
from opendr.lighting import LambertianPointLight
from opendr.renderer import ColoredRenderer
from opendr.filters import gaussian_pyramid
from util import im
from util.logger import log
from lib.frame import FrameData
from models.smpl import Smpl, copy_smpl, joints_coco
from models.bodyparts import faces_no_hands
from vendor.smplify.sphere_collisions import SphereCollisions
from vendor.smplify.robustifiers import GMOf
def get_cb(viz_rn, f):
if viz_rn is not None:
viz_rn.set(v=f.smpl, background_image=np.dstack((f.mask, f.mask, f.mask)))
viz_rn.vc.set(v=f.smpl)
def cb(_):
debug = np.array(viz_rn.r)
for j in f.J_proj.r:
cv2.circle(debug, tuple(j.astype(np.int)), 3, (0, 0, 0.8), -1)
for j in f.keypoints[:, :2]:
cv2.circle(debug, tuple(j.astype(np.int)), 3, (0, 0.8, 0), -1)
im.show(debug, id='pose', waittime=1)
else:
cb = None
return cb
def collision_obj(smpl, regs):
sp = SphereCollisions(pose=smpl.pose, betas=smpl.betas, model=smpl, regs=regs)
sp.no_hands = True
return sp
def pose_prior_obj(smpl, prior_data):
return (smpl.pose[3:] - prior_data['mean']).reshape(1, -1).dot(prior_data['prec'])
def height_predictor(b2m, betas):
return ch.hstack((betas.reshape(1, -1), [[1]])).dot(b2m)
def init(frames, body_height, b2m, viz_rn):
betas = frames[0].smpl.betas
E_height = None
if body_height is not None:
E_height = height_predictor(b2m, betas) - body_height * 1000.
# first get a rough pose for all frames individually
for i, f in enumerate(frames):
if np.sum(f.keypoints[[0, 2, 5, 8, 11], 2]) > 3.:
if f.keypoints[2, 0] > f.keypoints[5, 0]:
f.smpl.pose[0] = 0
f.smpl.pose[2] = np.pi
# pdb.set_trace()
E_init = {
'init_pose_{}'.format(i): f.pose_obj[[0, 2, 5, 8, 11]]
}
x0 = [f.smpl.trans, f.smpl.pose[:3]]
if E_height is not None and i == 0:
E_init['height'] = E_height
E_init['betas'] = betas
x0.append(betas)
ch.minimize(
E_init,
x0,
method='dogleg',
options={
'e_3': .01,
},
callback=get_cb(viz_rn, f)
)
weights = zip(
[5., 4.5, 4.],
[5., 4., 3.]
)
E_betas = betas - betas.r
for w_prior, w_betas in weights:
x0 = [betas]
E = {
'betas': E_betas * w_betas,
}
if E_height is not None:
E['height'] = E_height
for i, f in enumerate(frames):
if np.sum(f.keypoints[[0, 2, 5, 8, 11], 2]) > 3.:
x0.extend([f.smpl.pose[range(21) + range(27, 30) + range(36, 60)], f.smpl.trans])
E['pose_{}'.format(i)] = f.pose_obj
E['prior_{}'.format(i)] = f.pose_prior_obj * w_prior
ch.minimize(
E,
x0,
method='dogleg',
options={
'e_3': .01,
},
callback=get_cb(viz_rn, frames[0])
)
def reinit_frame(frame, null_pose, nohands, viz_rn):
if (np.sum(frame.pose_obj.r ** 2) > 625 or np.sum(frame.pose_prior_obj.r ** 2) > 75)\
and np.sum(frame.keypoints[[0, 2, 5, 8, 11], 2]) > 3.:
log.info('Tracking error too large. Re-init frame...')
x0 = [frame.smpl.pose[:3], frame.smpl.trans]
frame.smpl.pose[3:] = null_pose
if frame.keypoints[2, 0] > frame.keypoints[5, 0]:
frame.smpl.pose[0] = 0
frame.smpl.pose[2] = np.pi
E = {
'init_pose': frame.pose_obj[[0, 2, 5, 8, 11]],
}
ch.minimize(
E,
x0,
method='dogleg',
options={
'e_3': .1,
},
callback=get_cb(viz_rn, frame)
)
E = {
'pose': GMOf(frame.pose_obj, 100),
'prior': frame.pose_prior_obj * 8.,
}
x0 = [frame.smpl.trans]
if nohands:
x0.append(frame.smpl.pose[range(21) + range(27, 30) + range(36, 60)])
else:
x0.append(frame.smpl.pose[range(21) + range(27, 30) + range(36, 72)])
ch.minimize(
E,
x0,
method='dogleg',
options={
'e_3': .01,
},
callback=get_cb(viz_rn, frame)
)
def fit_pose(frame, last_smpl, frustum, nohands, viz_rn):
if nohands:
faces = faces_no_hands(frame.smpl.f)
else:
faces = frame.smpl.f
dst_type = cv2.cv.CV_DIST_L2 if cv2.__version__[0] == '2' else cv2.DIST_L2
dist_i = cv2.distanceTransform(np.uint8(frame.mask * 255), dst_type, 5) - 1
dist_i[dist_i < 0] = 0
dist_i[dist_i > 50] = 50
dist_o = cv2.distanceTransform(255 - np.uint8(frame.mask * 255), dst_type, 5)
dist_o[dist_o > 50] = 50
rn_m = ColoredRenderer(camera=frame.camera, v=frame.smpl, f=faces, vc=np.ones_like(frame.smpl), frustum=frustum,
bgcolor=0, num_channels=1)
E = {
'mask': gaussian_pyramid(rn_m * dist_o * 100. + (1 - rn_m) * dist_i, n_levels=4, normalization='size') * 80.,
'2dpose': GMOf(frame.pose_obj, 100),
'prior': frame.pose_prior_obj * 4.,
'sp': frame.collision_obj * 1e3,
}
if last_smpl is not None:
E['last_pose'] = GMOf(frame.smpl.pose - last_smpl.pose, 0.05) * 50.
E['last_trans'] = GMOf(frame.smpl.trans - last_smpl.trans, 0.05) * 50.
if nohands:
x0 = [frame.smpl.pose[range(21) + range(27, 30) + range(36, 60)], frame.smpl.trans]
else:
x0 = [frame.smpl.pose[range(21) + range(27, 30) + range(36, 72)], frame.smpl.trans]
ch.minimize(
E,
x0,
method='dogleg',
options={
'e_3': .01,
},
callback=get_cb(viz_rn, frame)
)
def main(keypoint_file, masks_file, camera_file, out, model_file, prior_file, resize,
body_height, nohands, display):
# load data
with open(model_file, 'rb') as fp:
model_data = pkl.load(fp)
with open(camera_file, 'rb') as fp:
camera_data = pkl.load(fp)
with open(prior_file, 'rb') as fp:
prior_data = pkl.load(fp)
if 'basicModel_f' in model_file:
regs = np.load('vendor/smplify/models/regressors_locked_normalized_female.npz')
b2m = np.load('assets/b2m_f.npy')
else:
regs = np.load('vendor/smplify/models/regressors_locked_normalized_male.npz')
b2m = np.load('assets/b2m_m.npy')
keypoints = h5py.File(keypoint_file, 'r')['keypoints']
masks = h5py.File(masks_file, 'r')['masks']
num_frames = masks.shape[0]
# init
base_smpl = Smpl(model_data)
base_smpl.trans[:] = np.array([0, 0, 3])
base_smpl.pose[0] = np.pi
base_smpl.pose[3:] = prior_data['mean']
camera = ProjectPoints(t=np.zeros(3), rt=np.zeros(3), c=camera_data['camera_c'] * resize,
f=camera_data['camera_f'] * resize, k=camera_data['camera_k'], v=base_smpl)
frustum = {'near': 0.1, 'far': 1000.,
'width': int(camera_data['width'] * resize), 'height': int(camera_data['height'] * resize)}
if display:
debug_cam = ProjectPoints(v=base_smpl, t=camera.t, rt=camera.rt, c=camera.c, f=camera.f, k=camera.k)
debug_light = LambertianPointLight(f=base_smpl.f, v=base_smpl, num_verts=len(base_smpl), light_pos=np.zeros(3),
vc=np.ones(3), light_color=np.ones(3))
debug_rn = ColoredRenderer(camera=debug_cam, v=base_smpl, f=base_smpl.f, vc=debug_light, frustum=frustum)
else:
debug_rn = None
# generic frame loading function
def create_frame(i, smpl, copy=True):
f = FrameData()
f.smpl = copy_smpl(smpl, model_data) if copy else smpl
f.camera = ProjectPoints(v=f.smpl, t=camera.t, rt=camera.rt, c=camera.c, f=camera.f, k=camera.k)
f.keypoints = np.array(keypoints[i]).reshape(-1, 3) * np.array([resize, resize, 1])
f.J = joints_coco(f.smpl)
f.J_proj = ProjectPoints(v=f.J, t=camera.t, rt=camera.rt, c=camera.c, f=camera.f, k=camera.k)
f.mask = cv2.resize(np.array(masks[i], dtype=np.float32), (0, 0),
fx=resize, fy=resize, interpolation=cv2.INTER_NEAREST)
f.collision_obj = collision_obj(f.smpl, regs)
f.pose_prior_obj = pose_prior_obj(f.smpl, prior_data)
f.pose_obj = (f.J_proj - f.keypoints[:, :2]) * f.keypoints[:, 2].reshape(-1, 1)
return f
base_frame = create_frame(0, base_smpl, copy=False)
# get betas from 5 frames
log.info('Initial fit')
num_init = 5
indices_init = np.ceil(np.arange(num_init) * num_frames * 1. / num_init).astype(np.int)
init_frames = [base_frame]
for i in indices_init[1:]:
init_frames.append(create_frame(i, base_smpl))
init(init_frames, body_height, b2m, debug_rn)
# get pose frame by frame
with h5py.File(out, 'w') as fp:
last_smpl = None
poses_dset = fp.create_dataset("pose", (num_frames, 72), 'f', chunks=True, compression="lzf")
trans_dset = fp.create_dataset("trans", (num_frames, 3), 'f', chunks=True, compression="lzf")
betas_dset = fp.create_dataset("betas", (10,), 'f', chunks=True, compression="lzf")
for i in xrange(num_frames):
if i == 0:
current_frame = base_frame
else:
current_frame = create_frame(i, last_smpl)
log.info('Fit frame {}'.format(i))
# re-init if necessary
reinit_frame(current_frame, prior_data['mean'], nohands, debug_rn)
# final fit
fit_pose(current_frame, last_smpl, frustum, nohands, debug_rn)
poses_dset[i] = current_frame.smpl.pose.r
trans_dset[i] = current_frame.smpl.trans.r
if i == 0:
betas_dset[:] = current_frame.smpl.betas.r
last_smpl = current_frame.smpl
log.info('Done.')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'keypoint_file',
type=str,
help="File that contains 2D keypoint detections")
parser.add_argument(
'masks_file',
type=str,
help="File that contains segmentations")
parser.add_argument(
'camera',
type=str,
help="pkl file that contains camera settings")
parser.add_argument(
'out',
type=str,
help="Out file path")
parser.add_argument(
'--model', '-m',
default='vendor/smpl/models/basicmodel_m_lbs_10_207_0_v1.1.0.pkl',
help='Path to SMPL model')
parser.add_argument(
'--prior', '-p',
default='assets/prior_a_pose.pkl',
help='Path to pose prior')
parser.add_argument(
'--resize', '-r', default=0.5, type=float,
help="Resize factor")
parser.add_argument(
'--body_height', '-bh', default=None, type=float,
help="Height of the subject in meters (optional)")
parser.add_argument(
'--nohands', '-nh',
action='store_true',
help="Exclude hands from optimization")
parser.add_argument(
'--display', '-d',
action='store_true',
help="Enable visualization")
args = parser.parse_args()
main(args.keypoint_file, args.masks_file, args.camera, args.out, args.model, args.prior, args.resize,
args.body_height, args.nohands, args.display)
|